
Sarah Bird, Henry Cook, Krste Asanovic, John Kubiatowicz and Dave Patterson

METHODOLOGY!

• We use RAMP Gold with hardware partitioning!
• Using PARSEC and Synthetic Benchmarks!
• Running Tessellation (ROS)!

Application Modeling and Hardware Partitioning Mechanisms
for Resource Management!

METHODOLOGY EVALUATION!

MODEL FORMULATION!

MAKING SCHEDULING DECISIONS!

• Create models from performance data sample!
• Input: performance and activity metrics!
• Output: predicted perf. for untested allocations!

• Explore different model types!
• Linear, Quadratic, KCCA, GPRS!

• Use models to predict the perf. of possible allocations!

DECISION-MAKING RESULTS!

RESOURCE ALLOCATION FRAMEWORK!

HARDWARE PARTITIONG MECHANISMS!

Core Partitioning:!
Easily partitioned by assigning threads to cores in a partition.
Application chooses which threads run on which cores.!

Cache Capacity Partitioning (for shared caches):!
Caches can be partitioned by ways or banks. For manycore
chips we can use bank based, allowing an application can be
allocated more local banks.!

Bandwidth Partitioning:!
Using Globally Synchronous Frames (Lee et al. ISCA 2008)
we can guarantee minimum bandwidth (Packets/Frame) and
bound maximum delay, while also!
providing differentiated services.

• We define an objective function that uses the predictive
models of the two applications.
• Experiment with different objective functions to represent
best system performance, and lowest energy.

• Minimize the sum total of cycles on the machine
• Minimize the time to completion for the set of benchmarks
• Minimize energy based on a simple energy model

• We can give weights to the model outputs and other features.

• We use the active-set algorithm for nonlinear constrained
optimization (fmincon in Matlab) to solve the objective
function.

CONCLUSIONS!

(7.15)

RESOURCE ALLOCATION OBJECTIVES!

This graph
shows how
effective our
models are a
picking an
allocation vs.
the best and
worst alloc.
Time-
mux’ing or
dividing the
machine in
half.

• Scheduling using predictive performance models shows
a lot of promise. !

• Quadratic model is within 3% of optimal !
• Time-multiplexing is on average 2x of optimal!
• Dividing the machine in half is on average 1.5x of opt.!

• Itʼs important to evaluate the approach on a system with
full size benchmarks and testing all the allocations!

• We run all possible allocations for the two benchmarks
executing together.
• Compare with simple baselines

• Best Spatial Partition
• Time-Multiplexing each application on the whole machine
• Dividing the Machine in Half Spatially

• Each partition receives a vector of
basic resources dedicated to it!
– Some number of processing
elements (e.g., cores)!

– A portion of physical memory !
– A portion of shared cache memory !
– A fraction of memory bandwidth!

• Allocate minimum resources
necessary for each applications QoS
requirements!

• Allocate remaining resources to meet
some system-level objective!
– Best performance!
– Lowest Energy!

• Doesnʼt require application developers
to worry about low-level resources!

• Collect performance data to create
the models. !
• Collect performance data for all
possible allocations to validate models
and decisions !

• Evaluation of model accuracy for the different model
types using microbenchmarks

Minimizing the urgency of the
system using convex optimization

 La = PMa(r(0,a), r(1,a), …, r(n-1,a)) La

Ua(La)

Continuously
Minimize

(subject to
restrictions on the

total amount of
resources)

 Lb = PMb(r(0,b), r(1,b), …, r(n-1,b)) Lb

Ub(Lb)

 Li = PMi(r(0,i), r(1,i), …, r(n-1,i)) Li

Ui(Li)

Performance Model Urgency Function

[Burton Smith (MSR), Operating System Resource Management (Keynote), IPDPS 2010]

 Li = PM(r(0, i), r(1, i), …, r(n-1, i))

 Li

Ui (Li)

Service
Requirement

si = slope

Ui (Li) = MAX(si · (Li - di), 0)

di

Performance Model
(PM)

Expected to decrease
with resources

r(1,i): Allocation of resource of type 1 to Cell Ci

• Performance Funtion
 Li = PMi(r(0,i), r(1,i), …, r(n-1,i))

Resource

La
te

nc
y

Resource

La
te

nc
y

La
te

nc
y

Resource

• Programmers are unlikely to know exactly how low-level
resources effect performance!
– Developers are concerned application-level metrics !

• e.g., frames/sec, requests/sec!
– Operating system has to make decisions about
resource qualities!
• e.g., number of cores, cache slices, memory
bandwidth!

• Automatically constructing performance models is a
good way to bridge the gap between application-level
metrics and hardware resources!

APPLICATION MODELING!

