
EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Productive Auto-tuning of Stencil Grid Kernels
S. Kamil, C. Chan, K. Datta, S. Williams, J. Shalf, L. Oliker, K. Yelick

P A R A L L E L C O M P U T I N G L A B O R A T O R Y

Personal
Health

Image
Retrieval

Hearing,
Music Speech Parallel

Browser
Design Patterns/Motifs

Sketching

Legacy
Code Schedulers Communication &

Synch. Primitives
Efficiency Language Compilers

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

C
or

re
ct

ne
ss

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with Replay

Directed
Testing

C&CL Compiler/Interpreter

Efficiency
Languages

Type
Systems

D
ia

gn
os

in
g

P
ow

er
/P

er
fo

rm
an

ce

Auto-tuners

Productive Auto-Tuning
•  Auto-tuning is an automated, general system for performance
portability across architectures, using domain-specific knowledge

•  Traditional optimization speeds up one kernel on one platform

•  Traditional Auto-tuning speeds up one kernel on many platforms
•  Strategy in many numerical libraries such as Atlas and OSKI

•  Productive Auto-tuning: goal is to speed up many kernels on many
platforms

•  Build tuner for a class of kernels
•  Use high-level knowledge of the motif to optimize specific
instantiations

Where this fits in the ParLab
•  ParLab is the interdisciplinary group at UC Berkeley investigating the
impact of many-core parallelism

•  Software stack is divided into Efficiency and Productivity Layers

•  This work crosses between both layers, providing
framework/library support for arbitrary structured grid kernels

Parallel
Libraries

Parallel
Frameworks

Initial
Implementation

Candidate
Implementation

Apply

Domain-Specific
Transformations

Evaluate
Candidate

Library/Code
Snippet for User

to Call

Auto-tuner

Structured Grid: Stencil Kernels
•  Many computations on grids with regular structures can be
represented as “sweeps” over the grid, where each point in a sweep is
a arithmetic combination of the point’s neighbors

•  Applications include PDE solvers, climate simulation, image
processing/filtering

Auto-tuner Design
•  Stencils described in a Domain-Specific Language (DSL)

•  Currently a simple subset of Fortran

•  Auto-tuner takes annotated description of kernel and performs the
following steps:

1.  Auto-tuner parses stencil code into an intermediate representation
2.  Representation is transformed into auto-parallelized version
3.  Backend strategy engines enumerate applicable parameter space and

1.  Generate timing stub
2.  Generate each version of code
3.  Iterate over versions & measure performance
4.  Choose optimal version

4.  Best-performing version is packaged into callable library

Performance Results

Callable
Library

i,j,k
 i+1,j,k
i-1,j,k

i,j+1,k

i,j,k+1

i,j,k-1

i,j-1,k
Example: 7 point stencil in 3D

Example Stencil Kernels

xy product

write_array[]

x dimension read_array[]

u’

u
read_array[][] x dimension

write_array[]

xy product

x
y
z

u

write_array[][]

x dimension read_array[]

xy product

x
y
z

u

write_array[]

x dimension read_array[]

u’

u

filter_array[] lookup

Laplacian
 Divergence

Gradient
 Bilateral Filter

LAPLACIAN

D

IVERG
ENCE

G
RADIENT

B
ILATERAL F

ILTER

Auto-tuning

Auto-
parallelization

serial
reference

OpenMP
Comparison

Auto-NUMA STREAM
Predicted

•  Original Fortran code uses multidimensional arrays

•  Auto-tuned C code uses flat single-dimensional arrays

•  Bilateral filter has radius parameter that changes stencil footprint

•  Excellent performance gains

•  Up to 22x for memory-bound kernels

•  Near-perfect scaling for compute-bound bilateral filter kernel

•  Comparable to kernel-specific auto-tuning performance on multicore  
from previous work

•  Productivity gains: Performance and Kernel portability

•  Laplacian, Divergence, and Gradient tuned fully-automatically

•  Required no changes to auto-tuning framework

•  Compared to auto-tuning each kernel individually: large portion of  
performance at a fraction of the effort

•  Hand-tuner for a single kernel requires weeks to months of effort!

•  Lots of future work

•  Extend generality of supported kernels (and define the domain)

•  Improve CUDA/OpenCL tuner to incorporate better optimizations

•  Extend supported backends (Local store archs, etc.)

•  Friendly frontend: also support higher-level definitions of kernels

