
EECS 
Electrical Engineering and 

Computer Sciences BERKELEY PAR LAB 

Productive Auto-tuning of Stencil Grid Kernels 
S. Kamil, C. Chan, K. Datta, S. Williams, J. Shalf, L. Oliker, K. Yelick 

P    A    R    A    L    L    E    L        C    O    M    P    U    T    I    N    G        L    A    B   O    R    A    T    O    R    Y 

Personal 
Health 

Image 
Retrieval 

Hearing, 
Music Speech Parallel 

Browser 
Design Patterns/Motifs 

Sketching 

Legacy 
Code Schedulers Communication & 

Synch. Primitives 
Efficiency Language Compilers 

Legacy OS 

Multicore/GPGPU 

OS Libraries & Services 

RAMP Manycore 

Hypervisor 

C
or

re
ct

ne
ss

 

Composition & Coordination Language (C&CL) 

Parallel 
Libraries 

Parallel 
Frameworks 

Static 
Verification 

Dynamic 
Checking 

Debugging 
with Replay 

Directed 
Testing 

C&CL Compiler/Interpreter 

Efficiency 
Languages 

Type 
Systems 

D
ia

gn
os

in
g 

P
ow

er
/P

er
fo

rm
an

ce
 

Auto-tuners 

Productive Auto-Tuning 
•  Auto-tuning is an automated, general system for performance 
portability across architectures, using domain-specific knowledge 

•  Traditional optimization speeds up one kernel on one platform 

•  Traditional Auto-tuning speeds up one kernel on many platforms 
•  Strategy in many numerical libraries such as Atlas and OSKI 

•  Productive Auto-tuning: goal is to speed up many kernels on many 
platforms 

•  Build tuner for a class of kernels 
•  Use high-level knowledge of the motif to optimize specific 
instantiations 

Where this fits in the ParLab 
•  ParLab is the interdisciplinary group at UC Berkeley investigating the 
impact of many-core parallelism 

•  Software stack is divided into Efficiency and Productivity Layers 

•  This work crosses between both layers, providing  
framework/library support for arbitrary structured grid kernels 
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Structured Grid: Stencil Kernels 
•  Many computations on grids with regular structures can be 
represented as “sweeps” over the grid, where each point in a sweep is  
a arithmetic combination of the point’s neighbors 

•  Applications include PDE solvers, climate simulation, image 
processing/filtering 

Auto-tuner Design 
•  Stencils described in a Domain-Specific Language (DSL) 

•  Currently a simple subset of Fortran 

•  Auto-tuner takes annotated description of kernel and performs the 
following steps: 

1.  Auto-tuner parses stencil code into an intermediate representation 
2.  Representation is transformed into auto-parallelized version 
3.  Backend strategy engines enumerate applicable parameter space and 

1.  Generate timing stub 
2.  Generate each version of code 
3.  Iterate over versions & measure performance 
4.  Choose optimal version 

4.  Best-performing version is packaged into callable library 

Performance Results 
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Example Stencil Kernels 
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•  Original Fortran code uses multidimensional arrays

•  Auto-tuned C code uses flat single-dimensional arrays


•  Bilateral filter has radius parameter that changes stencil footprint


•  Excellent performance gains

•  Up to 22x for memory-bound kernels

•  Near-perfect scaling for compute-bound bilateral filter kernel

•  Comparable to kernel-specific auto-tuning performance on multicore  
from previous work


•  Productivity gains: Performance and Kernel portability

•  Laplacian, Divergence, and Gradient tuned fully-automatically

•  Required no changes to auto-tuning framework

•  Compared to auto-tuning each kernel individually: large portion of  
performance at a fraction of the effort


•   Hand-tuner for a single kernel requires weeks to months of effort!


•  Lots of future work

•  Extend generality of supported kernels (and define the domain)

•  Improve CUDA/OpenCL tuner to incorporate better optimizations

•  Extend supported backends (Local store archs, etc.)

•  Friendly frontend: also support higher-level definitions of kernels



