
Exploring the Design Space of a
Parallel Object Recognition System

Bor-Yiing Su, Tasneem Brutch, Kurt Keutzer

Histogram Kernel

Statements Targeting Object Recognition System

BFS Graph Traversal Kernel Pair-wise χ2 Distance Kernel

C. Gu, J. Lim, P. Arbelaez, and J. Malik, “Recognition Using Regions," Conference on

Computer Vision and Pattern Recognition (CVPR'09), Miami, FL, 2009.

Overall Performance

Future Work

• Develop Frameworks for Object Recognition Key
Computations
• Automate the design space exploration procedure

• Integration with the Par Lab stack
• Use SEJITS to explore the parallelization strategy layer
• Use autotuners to explore the platform layer

1. Exploring the design space is necessary to achieve high
performance on a hardware platform of choice

2. Take advantage of domain knowledge is necessary to
understand trade-offs among different parallelization methods
and achieve peak performance

Applications

Structural

Patterns

Computational

Patterns

Parallel Algorithm Strategy Patterns

Implementation Patterns

Execution Patterns

Hardware Features

Algorithm Layer

Parallelization

Strategy Layer

Platform Layer

Our Pattern LanguageDesign Space

Input
Image

Contour
Detection

Image
Segmentation

Feature
Extraction

Classification

Identified
Objects

Trained
Data

Feature
Extraction

Pair-wise
Distance

Computation

Weight
Learning

Training Classification

Object
Recognition

System

Image Queries

Outputs

Trained
Categories

Computation flow

Speedups

Original Serial Algorithm

Parallel Algorithm Classification

Training on 127 images

Computatio

n

Computation time (s)
Speedup

Serial Parallel

Feature 543 15.97 34x

Distance 1732 2.9 597x

Weight 57 1.41 40x

Total 2332 20.28 115x

Computation
Computation time (s)

Speedup
Serial Parallel

Contour 236.7 1.58 150x

Segmentation 2.27 0.357 6.36x

Feature 7.97 0.065 123x

Hough Voting 84.13 0.779 108x

Total 331.07 2.781 119x

Accuracy

Exploring the Algorithm Layer

Exploring the Parallelization Strategy Layer

• Traditional BFS graph traversal
algorithm

• Propagate information to nearby
neighbors

• Structured grid algorithm
• Gather information from nearby

neighbors

• Graph Partition • Parallel Task Queue

• Explored Design Space
• Parallel Task queue on Intel Core i7

using OpenMP with 8 threads
• Graph partition on Intel Core i7 using

OpenMP with 8 threads
• Structured grid on Nvidia GTX 480

• Graph representation of an image
• Each pixel is represented by a node
• Neighborhood relationship between pixels represented

by edges
• BFS Graph traversal on an image

• Propagate information from some pixels to other pixels

• Use a 128-bin histogram to
represent the contour feature of
a region
• The location information is

discretized into a 4 x 4 grid
• The orientation information

is discretized into 8
orientations

Exploring the Algorithm Layer

Exploring the Parallelization Strategy Layer

• Data to bins algorithm
• Each data point atomically accumulate itself

into the corresponding histogram bin

• Bins to data algorithm
• Each bin process its responsible

data points

• Geometric Decomposition • Parallel Reduction

• Explored Design Space
• Process each region in parallel on Intel

Core i7 using OpenMP with 8 threads
• Geometric decomposition on Nvidia

GTX 480
• Atomic accumulation algorithm on

Nvidia GTX 480
• Parallel reduction on Nvidia GTX 480

• Compute χ2 Distance between each pair of
regions
• Similar region pairs have shorter distances
• Different region pairs have longer distances

Exploring the Algorithm Layer

• Inner χ2 Distance • Outer χ2 Distance

Exploring the

Platform Layer

• Cache Mechanisms
• No Cache
• Hardware Controlled Cache

(Texture Memory)
• Software Controlled Cache

(Shared Memory)

