
Code Generators for Stencil
Auto-tuning

Shoaib Kamil with Cy Chan, Sam Williams,
Kaushik Datta, John Shalf, Katherine Yelick, Jim
Demmel, Leonid Oliker

Where this fits in Parlab

2

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Design Patterns/Motifs

Sketching

Legacy

Code
Schedulers

Communication &

Synch. Primitives

Efficiency Language Compilers

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

C
o

rr
e
c
tn

e
s
s

Composition & Coordination Language (C&CL)

Parallel

Libraries

Parallel

Frameworks

Static

Verification

Dynamic

Checking

Debugging

with

Replay

Directed

Testing

C&CL Compiler/Interpreter

Efficiency

Languages

Type

Systems

D
ia

g
n
o
s
in

g
 P

o
w

e
r/

P
e
rf

o
rm

a
n
c
e

Auto-tuners

Parallel
Libraries

Parallel
Frameworks

Conventional Optimization

 Take one kernel/application
 Perform some analysis

 Research literature for appropriate optimizations

 Implement some of them by hand-optimizing for one
target machine

 Iterate

 Result:

 Improve performance for one kernel on one
computer

3

Conventional Auto-tuning

 Automate the code generation and tuning process
 Perform some analysis of the kernel

 Research literature for appropriate optimizations

 Implement a code generator and search mechanism

 Explore optimization space

 Result:

 Improve performance for one kernel on many computers
 Provides performance portability

 Downside:
 Autotuner creation time is substantial

 Must reinvent the wheel for every kernel

4

Motif-specific Frameworks for Auto-tuning

 Programmers express calculation in high-level way

 Kernel represented internally in abstract form

 Auto-tuning system uses code transformation and
generation to implement domain-specific transformations

 Result:

 Significantly improve performance for many kernels in a
domain on many computers.
 Obtain performance portability without sacrificing productivity

5

Outline

1. Stencils

2. Framework

3. Performance/Productivity Results

4. Stencils in High Level Dynamic Languages

5. Conclusions

6

What’s a stencil ?

 Nearest neighbor computations on structured grids
(1D…ND array)

 Weights can be constant or vary depending
on space, time, or data

 Used in applications such as PDE
solvers, astrophysics,
climate simulation, image filtering

 Auto-tuning target: kernels with separate read
and write arrays

7

i,j,k i+1,j,k i-1,j,k

i,j+1,k

i,j,k+1

i,j,k-1

i,j-1,k

Studied Kernels

8

xy product

write_array[]

x dimension read_array[]

u’

u

read_array[][] x dimension

write_array[]

xy product

x

y

z

u

Laplacian

Divergence

Studied Kernels

9

Gradient

Bilateral
Filter

write_array[][]

x dimension read_array[]

xy product

x

y

z

u

write_array[]

x dimension read_array[]

u’

u

filter_array[]
lookup

Studied Kernels

10

Studied Kernels

11

Outline

1. Stencils

2. Framework

3. Performance/Productivity Results

4. Stencils in High Level Dynamic Languages

5. Conclusions

12

Auto-tuner Overview

13

Optimized
Library

Perl Script

Auto-tuner Overview

14

Optimized
Library

Perl Script

Auto-tuner Overview

15

Optimized
Library

Tuner

Auto-tuner Overview

16

Optimized
Library

• Input is a high-level description/implementation of the kernel

• Framework parses into an internal representation

• Strategy Engines + Backend Code Generators optimize &
generate candidate implementations

• End result: an optimized library containing best implementation

Many-/Multi-core Strategy Engine

 Multicore strategy engine divides computation into cache
blocks and distributes blocks over cores

 We use a single-program, multiple-data (SPMD) model
implemented with POSIX Threads (Pthreads)

 All threads created at the beginning of the application

 Tuner produces initialization routine that exploits first-
touch policy to ensure proper NUMA-aware allocation

17

Many-/Multi-core Strategy Engine
 Strategy Engine explores a number of auto-tuning optimizations:

 loop unrolling/register blocking

 cache blocking

 constant propagation / common subexpression elimination

 Future Work:

 cache bypass (e.g. movntpd)

 software prefetching

 SIMD intrinsics

 data structure transformations
18

CUDA Strategy Engine

 Strategy Engine parallelizes stencils using CUDA

 Exploit spatial locality by ensuring adjacent CUDA
threads operate on adjacent memory locations

 Memory coalescing

 Auto-tuning
 Explore shape of CUDA thread block

 Like register blocking optimization in Multi-core

 Future Work:

 Exploit temporal locality
 Properly use memory in all levels of the hierarchy

19

Outline

1. Stencils

2. Framework

3. Performance/Productivity Results

4. Stencils in High Level Dynamic Languages

5. Conclusions

20

Results Key

21

Auto-tuning

Auto-

parallelization

serial

reference

OpenMP

Comparison

Auto-NUMA

STREAM

Predicted

Original code in Fortran

Auto-parallelized using the stencil framework (no tuning)

Auto-parallelized plus NUMA optimization

Auto-tuned and auto-parallelized using the stencil framework

Memory-bound performance predicted using OpenMP STREAM
benchmark

Performance of a NUMA-aware auto-parallelized with OpenMP
version of the original code

Laplacian Results

22

Auto-tuning

Auto-

parallelization

serial

reference

OpenMP

Comparison

Auto-NUMA STREAM

Predicted

• Auto-parallelization by itself does not scale well on CPUs
• requires NUMA-aware alloc to get decent
performance
• our auto-parallelizer gets equal or better
performance than OpenMP

•Overall speedups of up to 22x on Nehalem (vs. serial
reference), 1.5x on GTX280

Divergence Results

23

Auto-tuning

Auto-

parallelization

serial

reference

OpenMP

Comparison

Auto-NUMA STREAM

Predicted

• Less benefit from auto-tuning on cache-based
architectures here

• As we expect based on arithmetic intensity

• Overall speedups of up to 13x on Victoria Falls,
2x on GTX280

Gradient Results

24

Auto-tuning

Auto-

parallelization

serial

reference

OpenMP

Comparison

Auto-NUMA STREAM

Predicted

• Heavily memory-bound, so architectures with high
memory BW get higher performance

• Overall speedups of up to 8.1x on Nehalem,
1.7x on GTX280

Bilateral Filter Results (r=3)

25

Auto-tuning

Auto-

parallelization

serial

reference

OpenMP

Comparison

Auto-NUMA

• Heavily compute-bound, plus lookup for filter weights
• Most of auto-tuning benefit comes from better
innermost-loop

• Overall speedups of 14.8x for Barcelona, 20.7x for
Nehalem

• Near linear speedup as cores increase

Outline

1. Stencils

2. Framework

3. Performance/Productivity Results

4. Stencils in High Level Dynamic Languages

5. Conclusions

26

High Level Languages

Common complaint from domain scientists: too
much overhead in experimenting with kernels
 Must manage memory, array layouts, etc

 Languages like Ruby & Python support high-
level programming with frameworks &
libraries

 What would productive parallel stencil
support look like in Ruby?
 Must deal with lack of thread-safety in interpreter

27

One Approach

 Solution: write stencil in Ruby
 Use conventions to simplify code structure

Then, transparently:

 Use Ruby’s introspective nature to parse code

 Dynamically translate to C, compile, link, and
execute translated code on Ruby data
structure

 Only translate the stencil kernel: the rest is
still in pure Ruby 28

Example

29

class LaplacianKernel < JacobiKernel
def kernel(in_grid, out_grid)
 in_grid.each_interior do |center|
 in_grid.neighbors(center,1).each do |x|
 out_grid[center] = out_grid[center]
 + 0.2 * in_grid[x]
 end
 end
 end
end

VALUE kern_par(int argc, VALUE* argv, VALUE self) {
struct NARRAY *temp_4;
double* in_grid;
GetNArray(argv[0], temp_4);
in_grid = (double*) NA_PTR(temp_4, 0);
struct NARRAY *temp_5;
double* out_grid;
GetNArray(argv[1], temp_5);
out_grid = (double*) NA_PTR(temp_5, 0);
int temp_8;
int temp_7;
int temp_6;

#pragma omp parallel for default(shared) private
(temp_6,temp_7,temp_8)
for (temp_8=1; temp_8<256-1; temp_8++) {
for (temp_7=1; temp_7<256-1; temp_7++) {
for (temp_6=1; temp_6<256-1; temp_6++) {
int center = INDEX(temp_6,temp_7,temp_8);
out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(temp_6-1,temp_7,temp_8)]));
out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(temp_6+1,temp_7,temp_8)]));
out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(temp_6,temp_7-1,temp_8)]));
out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(temp_6,temp_7+1,temp_8)]));
out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(temp_6,temp_7,temp_8-1)]));
out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(temp_6,temp_7,temp_8+1)]));
;}}}
return Qtrue;}

When the Ruby program calls kernel() this
is automatically generated, compiled, and
run

Results

 Comparable performance to OpenMP+C

 First execution takes more time (JITing)
 Subsequent executions are fast

30

Example: Laplacian on Nehalem (25 iterations)

• Ruby performance is between C+OpenMP and
C+OpenMP+NUMA

• Ruby version is not NUMA-aware

• Multicore stencil support in Ruby is >500x
faster than a pure Ruby implementation

Ruby Framework C + OpenMP C+OpenMP w/NUMA Initialization

Summary

 Summer 2008 Retreat: feedback that auto-tuners are
not very auto

 Winter 2008 Retreat: Presented idea of auto-tuners for a
class of kernels
 Serial results for 1 kernel

 Now: Parallel stencil auto-tuning for many kernels on
many architectures

 Obtain performance and platform portability

 High level dynamic languages can use same techniques
to produce portable efficient code

 Lots of future work: better CUDA/OpenCL support, widen
class of supported stencils

31

Acknowledgements

 Research supported by Microsoft (Award #024263) and
Intel (Award #024894) funding and by matching funding
by U.C. Discovery (Award #DIG07-10227) as well as
ASCR Office in the DOE Office of Science under contract
#AC02-05CH11231.

 Wes Bethel and Visualization Group at LBNL for serial
Bilateral Filter code and source data.

32

