Code Generators for Stencil
Auto-tuning

Shoaib Kamil with Cy Chan, Sam Williams,
Kaushik Datta, John Shalf, Katherine Yelick, Jim
Demmel, Leonid Oliker

"
Where this fits in Parlab

Parallel Parallel
Libraries Frameworks

Auto-tuners

Correctness

*
Conventional Optimization

m Take one kernel/application
Perform some analysis
Research literature for appropriate optimizations

Implement some of them by hand-optimizing for one
target machine

Iterate

m Result:

Improve performance for one kernel on one
computer

" J \
Conventional Auto-tuning

m Automate the code generation and tuning process
Perform some analysis of the kernel
Research literature for appropriate optimizations
Implement a code generator and search mechanism
Explore optimization space

m Result:

Improve performance for one kernel on many computers
Provides performance portability

m Downside:
Autotuner creation time is substantial
Must reinvent the wheel for every kernel

"
Motif-specific Frameworks for Auto-tuning”

m Programmers express calculation in high-level way
m Kernel represented internally in abstract form

m Auto-tuning system uses code transformation and
generation to implement domain-specific transformations

m Result:

Significantly improve performance for many kernels in a

domain on many computers.
Obtain performance portability without sacrificing productivity

=
Outline AT

Stencils

Framework

Performance/Productivity Results

Stencils in High Level Dynamic Languages
Conclusions

A A

What's a stencil ?

m Nearest neighbor computations on structured grids
(1D...ND array)

m Weights can be constant or vary depending
on space, time, or data
i,j+1,k

. . . i'].,], iljlk i+1/jlk
m Used in applications such as PDE * LK
solvers, astrophysics, o

climate simulation, image filtering JGRS

i,j,k+1
.Il]l

m Auto-tuning target: kernels with separate read
and write arrays

"
Studied Kernels

read_array[] x dimension
U | vty 7 L

rodust \
\|/ Laplacian

write_array|]

u v
read_array[][] x dimension
X IR
Y.] 7
N N \J /7 B
Divergence Xy preauct

write_array[]
u

"
Studied Kernels

read_array[] x dimension
u_| s Lt r 7 %
produtt
write_array[] | Gradient
X \ Vi /
y
Z
read_array[] x dimension
U ~ N2 —

filter_arrayw

Bilateral 90D 3
Filter _ _

write_array|]

1 v

u

"
Studied Kernels

DEB: 2200_3DT1_COR_0&]

E’/seudocoéc])r
ar: Varia
~950.0200

-150 -100 -50 0 50 100 150 10

"
Studied Kernels

DB: smooth-bilat-4-25-}

Pseudocolor

Var: Variabl
~950.0200
1125

75.00

37.50
100

0.000

Max: 235.0
Min: 0.000

-150 -100 -50

-150 -100 -50

= I
Outline AT

Stencils

Framework

Performance/Productivity Results

Stencils in High Level Dynamic Languages
Conclusions

A

12

"

Auto-tuner Overview

4 N [> Search E> - A
‘l Engines

P e rI S C ri pt Myriad of equivalent, ;ﬂfﬁ‘z Best performing

aptimized, implementations prablem implementation
(plus test harness) and configuration
\ M parameters

L 4

Optimized
Library

13

"
Auto-tuner Overview

-

Perl Script

Code \
Generators

C with
pihraads

ﬁ
£
=

|

CLIDA
j'

Myriad of equivalent,
aptimized, implementations

(plus test harness)

Search E> a R
Engines
of specif Best performing
prablem implementation
and configuration
| parameters
Optimized
Library

14

"
Auto-tuner Overview

EL

Feference
Implementation

Tuner

Code \
Generators

with
pihraads

ﬁ
£
=

|

CUDA
=/

Myriad of equivalent,
aptimized, implementations
(plus test harness)

Search E> a R
Engines
L?:ﬂ.';ﬁ Best performing
prablem implementation
and configuration
| — parameters
Optimized
Library

15

= B
Auto-tuner Overview

(" etratemy)
A [> ") [> [> Strategy Code [> [> Search [> - -
Engines Generators o5 c cu Engines
Feference _ = | Internal Abstract Myriad of equivalent in carfext Best performing
Implementation | o Syntax Tree . , iy of spaalfio - :
Representation plhraads aptimized, implementations prablem implementation
P (plus test harness) and configuration
cuo g
e \—— parameters

L 4

Op_timized i
- Input is a high-level description/implementation of the kernel ~ “°"
- Framework parses into an internal representation

» Strategy Engines + Backend Code Generators optimize &
generate candidate implementations

 End result: an optimized library containing best implementation

16

» S
Many-/Multi-core Strategy Engine

m Multicore strategy engine divides computation into cache
blocks and distributes blocks over cores

m We use a single-program, multiple-data (SPMD) model
implemented with POSIX Threads (Pthreads)

m All threads created at the beginning of the application

m Tuner produces initialization routine that exploits first-
touch policy to ensure proper NUMA-aware allocation

17

"
Many-/Multi-core Strategy Engine

m Strategy Engine explores a number of auto-tuning optimizations:
=1 loop unrolling/register blocking
1 cache blocking
1 constant propagation / common subexpression eIinlination

RE gy
e m
r
R
{a) (b} (c)
Decomposition of a Nodae Block Decompasition into Decompasition into
info a Chunk of Core Blocks Thread Blocks Register Blocks

m Future Work:
1 cache bypass (e.g. movnitpd)
1 software prefetching
71 SIMD intrinsics
O

data structure transformations
18

" S
CUDA Strategy Engine

m Strategy Engine parallelizes stencils using CUDA

m Exploit spatial locality by ensuring adjacent CUDA
threads operate on adjacent memory locations

m Memory coalescing

m Auto-tuning

Explore shape of CUDA thread block
Like register blocking optimization in Multi-core

m Future Work:

Exploit temporal locality
m Properly use memory in all levels of the hierarchy

19

"
Outline

Stencils

Framework

Performance/Productivity Results

Stencils in High Level Dynamic Languages
Conclusions

A A

20

" S
Results Key

serial Original code in Fortran
reference

Auto-
parallelization

Auto-parallelized using the stencil framework (no tuning)

Auto-NUMA Auto-parallelized plus NUMA optimization

Auto-tuning Auto-tuned and auto-parallelized using the stencil framework

ST Memory-bound performance predicted using OpenMP STREAM
benchmark
Q Comparison Performance of a NUMA-aware auto-parallelized with OpenMP

version of the original code
21

"
Results

Laplacian

Eérnalnna |

1 2 4
Threads

Auto-tuning

Auto-NUMA

Auto-

parallelization

serial
reference

8 i 2 4 8 18 8 16 32 64 128
Threads

Q

2
Nehalem

OpenMP
Comparison

STREAM
Predicted

Victoria Falls | '~ IGTX280

ORef 1 2 4 8 16 32 64 128256512 1K
Threads CUDA Thread Blocks

 Auto-parallelization by itself does not scale well on CPUs
* requires NUMA-aware alloc to get decent
performance
* our auto-parallelizer gets equal or better
performance than OpenMP

«Overall speedups of up to 22x on Nehalem (vs. serial

reference), 1.5x on GTX280
22

" S
Divergence Results

3. . 18 :
Nehalem Victoria Falls GTX280

2.

-g_st
o
. 53
1} 1 o}
5 1
o1 2 4 8 @

p's

GFlo
th

0.

Barcelona
3

]

[

Threads

Auto-tuning <>

6

5 -

12
Threads Threads CUDA Thread Blocks

OpenMP
Comparison

Auto-NUMA

STREAM
Predicted

Auto-
parallelization

serial
reference

4 88 186 4 16 32 64 128 I:}HEf'I 2 4 8 16 32 64 128256512 1K

« Less benefit from auto-tuning on cache-based
architectures here
» As we expect based on arithmetic intensity

 Overall speedups of up to 13x on Victoria Falls,
2x on GTX280

23

"
Gradient Results.

Nehalem 3|Victoria Falls | . (GTX280

Barcelona

1 z 4 8 1 2 4 B 16 8 16 32 64 128 "Ref 1 2 4 8 16 32 64 128256512 1K
Threads Threads Threads CUDA Thread Blocks

OpenMP « Heavily memory-bound, so architectures with high

Auto-tuni : -
RN < comparison memory BW get higher performance
STREAM
Auto-NUMA ;
Predicted « Overall speedups of up to 8.1x on Nehalem,
Auto- 1.7x on GTX280
parallelization
serial
reference

24

" S
Bllateral F|Iter Results (r=3)

Earn&luna

1 2 4 8
Threads

_ OpenMP
Auto-tuning <> Comparison
Auto-NUMA

Auto-
parallelization

serial
reference

Nehalem

i 2 4 8 16
Threads

« Heavily compute-bound, plus lookup for filter weights
» Most of auto-tuning benefit comes from better
innermost-loop

 Overall speedups of 14.8x for Barcelona, 20.7x for
Nehalem

» Near linear speedup as cores increase

25

"
Outline

Stencils

Framework

Performance/Productivity Results

Stencils in High Level Dynamic Languages
Conclusions

A A

26

"
High Level Languages

Common complaint from domain scientists: too
much overhead in experimenting with kernels
Must manage memory, array layouts, etc

m Languages like Ruby & Python support high-
evel programming with frameworks &
ibraries

m What would productive paralle/ stencil
support look like in Ruby?

Must deal with lack of thread-safety in interpreter

27

"
One Approach

m Solution: write stencil in Ruby
Use conventions to simplify code structure

Then, transparently:

m Use Ruby’s introspective nature to parse code

m Dynamically translate to C, compile, link, and

execute translated code on Ruby data
structure

m Only translate the stencil kernel: the rest is
still in pure Ruby

28

*
Example

class LaplacianKernel < JacobiKernel
def kernel(in_grid, out_grid)
in_grid.each_interior do |center|
in_grid.neighbors(center,1).each do |x|
out_grid[center] = out _grid[center]
+ 0.2 * in_grid[x]
end
end
end
end

When the Ruby program calls kernel() this
is automatically generated, compiled, and
run

VALUE kern_par(int argc, VALUE* argv, VALUE self) {
struct NARRAY *temp_4;

double* in_grid;

GetNArray(argv[0], temp_4);

in_grid = (double*) NA_PTR(temp_4, 0);
struct NARRAY *temp_5;

double* out_grid;

GetNArray(argv[1l], temp_5);

out_grid = (double*) NA_PTR(temp_5, 0);
int temp_8;

int temp_7;

int temp_6;

#tpragma omp parallel for default(shared) private
(temp_6,temp_7,temp_8)
for (temp 8=1; temp 8<256-1; temp 8++) {
for (temp_7=1; temp_7<256-1; temp 7++) {
for (temp_6=1; temp 6<256-1; temp 6++) {
int center = INDEX(temp 6,temp 7,temp 8);
out_grid[center] = (out_grid[center]

+(0.2*in_grid[INDEX(temp_6-1,temp 7,temp 8)]));
out_grid[center] = (out_grid[center]

+(0.2*in_grid[INDEX(temp_6+1,temp 7,temp 8)]));
out_grid[center] = (out_grid[center]

+(0.2*in_grid[INDEX(temp_6,temp 7-1,temp 8)]));
out_grid[center] = (out_grid[center]

+(0.2*in_grid[INDEX(temp_6,temp 7+1,temp 8)]));
out_grid[center] = (out_grid[center]

+(0.2*in_grid[INDEX(temp_6,temp 7,temp 8-1)]));
out_grid[center] = (out_grid[center]

+(0.2*in_grid[INDEX(temp_6,temp_7,temp_8+1)]));
31

return Qtrue;}

29

"
Results

m Comparable performance to OpenMP+C

m First execution takes more time (JITing)
Subsequent executions are fast

& Neﬁalem Lﬁplaciaﬁ

Example: Laplacian on Nehalem (25 iterations)

a4 « Ruby performance is between C+OpenMP and
E‘a C+OpenMP+NUMA

L

T

* Ruby version is not NUMA-aware

 Multicore stencil support in Ruby is >500x
faster than a pure Ruby implementation

1 2 4 B 16
Threads

- Ruby Framework - C + OpenMP - C+OpenMP w/NUMA Initialization
30

"
Summary

Summer 2008 Retreat: feedback that auto-tuners are
not very auto

Winter 2008 Retreat: Presented idea of auto-tuners for a
class of kernels
Serial results for 1 kernel

Now: Parallel stencil auto-tuning for many kernels on
many architectures

Obtain performance and platform portability

High level dynamic languages can use same techniques
to produce portable efficient code

Lots of future work: better CUDA/OpenCL support, widen
class of supported stencils

31

"
Acknowledgements

m Research supported by Microsoft (Award #024263) and
Intel (Award #024894) funding and by matching funding
by U.C. Discovery (Award #DIG07-10227) as well as
ASCR Office in the DOE Office of Science under contract
#AC02-05CH11231.

m Wes Bethel and Visualization Group at LBNL for serial
Bilateral Filter code and source data.

32

