
Code Generators for Stencil
Auto-tuning

Shoaib Kamil with Cy Chan, Sam Williams,
Kaushik Datta, John Shalf, Katherine Yelick, Jim
Demmel, Leonid Oliker

Where this fits in Parlab

2

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Design Patterns/Motifs

Sketching

Legacy

Code
Schedulers

Communication &

Synch. Primitives

Efficiency Language Compilers

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

C
o

rr
e
c
tn

e
s
s

Composition & Coordination Language (C&CL)

Parallel

Libraries

Parallel

Frameworks

Static

Verification

Dynamic

Checking

Debugging

with

Replay

Directed

Testing

C&CL Compiler/Interpreter

Efficiency

Languages

Type

Systems

D
ia

g
n
o
s
in

g
 P

o
w

e
r/

P
e
rf

o
rm

a
n
c
e

Auto-tuners

Parallel
Libraries

Parallel
Frameworks

Conventional Optimization

 Take one kernel/application
 Perform some analysis

 Research literature for appropriate optimizations

 Implement some of them by hand-optimizing for one
target machine

 Iterate

 Result:

 Improve performance for one kernel on one
computer

3

Conventional Auto-tuning

 Automate the code generation and tuning process
 Perform some analysis of the kernel

 Research literature for appropriate optimizations

 Implement a code generator and search mechanism

 Explore optimization space

 Result:

 Improve performance for one kernel on many computers
 Provides performance portability

 Downside:
 Autotuner creation time is substantial

 Must reinvent the wheel for every kernel

4

Motif-specific Frameworks for Auto-tuning

 Programmers express calculation in high-level way

 Kernel represented internally in abstract form

 Auto-tuning system uses code transformation and
generation to implement domain-specific transformations

 Result:

 Significantly improve performance for many kernels in a
domain on many computers.
 Obtain performance portability without sacrificing productivity

5

Outline

1. Stencils

2. Framework

3. Performance/Productivity Results

4. Stencils in High Level Dynamic Languages

5. Conclusions

6

What’s a stencil ?

 Nearest neighbor computations on structured grids
(1D…ND array)

 Weights can be constant or vary depending
on space, time, or data

 Used in applications such as PDE
solvers, astrophysics,
climate simulation, image filtering

 Auto-tuning target: kernels with separate read
and write arrays

7

i,j,k i+1,j,k i-1,j,k

i,j+1,k

i,j,k+1

i,j,k-1

i,j-1,k

Studied Kernels

8

xy product

write_array[]

x dimension read_array[]

u’

u

read_array[][] x dimension

write_array[]

xy product

x

y

z

u

Laplacian

Divergence

Studied Kernels

9

Gradient

Bilateral
Filter

write_array[][]

x dimension read_array[]

xy product

x

y

z

u

write_array[]

x dimension read_array[]

u’

u

filter_array[]
lookup

Studied Kernels

10

Studied Kernels

11

Outline

1. Stencils

2. Framework

3. Performance/Productivity Results

4. Stencils in High Level Dynamic Languages

5. Conclusions

12

Auto-tuner Overview

13

Optimized
Library

Perl Script

Auto-tuner Overview

14

Optimized
Library

Perl Script

Auto-tuner Overview

15

Optimized
Library

Tuner

Auto-tuner Overview

16

Optimized
Library

• Input is a high-level description/implementation of the kernel

• Framework parses into an internal representation

• Strategy Engines + Backend Code Generators optimize &
generate candidate implementations

• End result: an optimized library containing best implementation

Many-/Multi-core Strategy Engine

 Multicore strategy engine divides computation into cache
blocks and distributes blocks over cores

 We use a single-program, multiple-data (SPMD) model
implemented with POSIX Threads (Pthreads)

 All threads created at the beginning of the application

 Tuner produces initialization routine that exploits first-
touch policy to ensure proper NUMA-aware allocation

17

Many-/Multi-core Strategy Engine
 Strategy Engine explores a number of auto-tuning optimizations:

 loop unrolling/register blocking

 cache blocking

 constant propagation / common subexpression elimination

 Future Work:

 cache bypass (e.g. movntpd)

 software prefetching

 SIMD intrinsics

 data structure transformations
18

CUDA Strategy Engine

 Strategy Engine parallelizes stencils using CUDA

 Exploit spatial locality by ensuring adjacent CUDA
threads operate on adjacent memory locations

 Memory coalescing

 Auto-tuning
 Explore shape of CUDA thread block

 Like register blocking optimization in Multi-core

 Future Work:

 Exploit temporal locality
 Properly use memory in all levels of the hierarchy

19

Outline

1. Stencils

2. Framework

3. Performance/Productivity Results

4. Stencils in High Level Dynamic Languages

5. Conclusions

20

Results Key

21

Auto-tuning

Auto-

parallelization

serial

reference

OpenMP

Comparison

Auto-NUMA

STREAM

Predicted

Original code in Fortran

Auto-parallelized using the stencil framework (no tuning)

Auto-parallelized plus NUMA optimization

Auto-tuned and auto-parallelized using the stencil framework

Memory-bound performance predicted using OpenMP STREAM
benchmark

Performance of a NUMA-aware auto-parallelized with OpenMP
version of the original code

Laplacian Results

22

Auto-tuning

Auto-

parallelization

serial

reference

OpenMP

Comparison

Auto-NUMA STREAM

Predicted

• Auto-parallelization by itself does not scale well on CPUs
• requires NUMA-aware alloc to get decent
performance
• our auto-parallelizer gets equal or better
performance than OpenMP

•Overall speedups of up to 22x on Nehalem (vs. serial
reference), 1.5x on GTX280

Divergence Results

23

Auto-tuning

Auto-

parallelization

serial

reference

OpenMP

Comparison

Auto-NUMA STREAM

Predicted

• Less benefit from auto-tuning on cache-based
architectures here

• As we expect based on arithmetic intensity

• Overall speedups of up to 13x on Victoria Falls,
2x on GTX280

Gradient Results

24

Auto-tuning

Auto-

parallelization

serial

reference

OpenMP

Comparison

Auto-NUMA STREAM

Predicted

• Heavily memory-bound, so architectures with high
memory BW get higher performance

• Overall speedups of up to 8.1x on Nehalem,
1.7x on GTX280

Bilateral Filter Results (r=3)

25

Auto-tuning

Auto-

parallelization

serial

reference

OpenMP

Comparison

Auto-NUMA

• Heavily compute-bound, plus lookup for filter weights
• Most of auto-tuning benefit comes from better
innermost-loop

• Overall speedups of 14.8x for Barcelona, 20.7x for
Nehalem

• Near linear speedup as cores increase

Outline

1. Stencils

2. Framework

3. Performance/Productivity Results

4. Stencils in High Level Dynamic Languages

5. Conclusions

26

High Level Languages

Common complaint from domain scientists: too
much overhead in experimenting with kernels
 Must manage memory, array layouts, etc

 Languages like Ruby & Python support high-
level programming with frameworks &
libraries

 What would productive parallel stencil
support look like in Ruby?
 Must deal with lack of thread-safety in interpreter

27

One Approach

 Solution: write stencil in Ruby
 Use conventions to simplify code structure

Then, transparently:

 Use Ruby’s introspective nature to parse code

 Dynamically translate to C, compile, link, and
execute translated code on Ruby data
structure

 Only translate the stencil kernel: the rest is
still in pure Ruby 28

Example

29

class LaplacianKernel < JacobiKernel
def kernel(in_grid, out_grid)
 in_grid.each_interior do |center|
 in_grid.neighbors(center,1).each do |x|
 out_grid[center] = out_grid[center]
 + 0.2 * in_grid[x]
 end
 end
 end
end

VALUE kern_par(int argc, VALUE* argv, VALUE self) {
struct NARRAY *temp_4;
double* in_grid;
GetNArray(argv[0], temp_4);
in_grid = (double*) NA_PTR(temp_4, 0);
struct NARRAY *temp_5;
double* out_grid;
GetNArray(argv[1], temp_5);
out_grid = (double*) NA_PTR(temp_5, 0);
int temp_8;
int temp_7;
int temp_6;

#pragma omp parallel for default(shared) private
(temp_6,temp_7,temp_8)
for (temp_8=1; temp_8<256-1; temp_8++) {
for (temp_7=1; temp_7<256-1; temp_7++) {
for (temp_6=1; temp_6<256-1; temp_6++) {
int center = INDEX(temp_6,temp_7,temp_8);
out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(temp_6-1,temp_7,temp_8)]));
out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(temp_6+1,temp_7,temp_8)]));
out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(temp_6,temp_7-1,temp_8)]));
out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(temp_6,temp_7+1,temp_8)]));
out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(temp_6,temp_7,temp_8-1)]));
out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(temp_6,temp_7,temp_8+1)]));
;}}}
return Qtrue;}

When the Ruby program calls kernel() this
is automatically generated, compiled, and
run

Results

 Comparable performance to OpenMP+C

 First execution takes more time (JITing)
 Subsequent executions are fast

30

Example: Laplacian on Nehalem (25 iterations)

• Ruby performance is between C+OpenMP and
C+OpenMP+NUMA

• Ruby version is not NUMA-aware

• Multicore stencil support in Ruby is >500x
faster than a pure Ruby implementation

Ruby Framework C + OpenMP C+OpenMP w/NUMA Initialization

Summary

 Summer 2008 Retreat: feedback that auto-tuners are
not very auto

 Winter 2008 Retreat: Presented idea of auto-tuners for a
class of kernels
 Serial results for 1 kernel

 Now: Parallel stencil auto-tuning for many kernels on
many architectures

 Obtain performance and platform portability

 High level dynamic languages can use same techniques
to produce portable efficient code

 Lots of future work: better CUDA/OpenCL support, widen
class of supported stencils

31

Acknowledgements

 Research supported by Microsoft (Award #024263) and
Intel (Award #024894) funding and by matching funding
by U.C. Discovery (Award #DIG07-10227) as well as
ASCR Office in the DOE Office of Science under contract
#AC02-05CH11231.

 Wes Bethel and Visualization Group at LBNL for serial
Bilateral Filter code and source data.

32

