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Conventional Optimization 

 Take one kernel/application 
 Perform some analysis 

 Research literature for appropriate optimizations 

 Implement some of them by hand-optimizing for one 
target machine 

 Iterate  

 

 Result:  

 Improve performance for one kernel on one 
computer 
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Conventional Auto-tuning 

 Automate the code generation and tuning process 
 Perform some analysis of the kernel 

 Research literature for appropriate optimizations 

 Implement a code generator and search mechanism 

 Explore optimization space 

 

 Result: 

 Improve performance for one kernel on many computers 
 Provides performance portability 

 

 Downside: 
 Autotuner creation time is substantial 

 Must reinvent the wheel for every kernel 
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Motif-specific Frameworks for Auto-tuning 

 Programmers express calculation in high-level way 

 Kernel represented internally in abstract form 

 Auto-tuning system uses code transformation and 
generation to implement domain-specific transformations 

 

 
 

 Result: 

 Significantly improve performance for many kernels in a 
domain on many computers. 
 Obtain performance portability without sacrificing productivity 
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2. Framework 
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4. Stencils in High Level Dynamic Languages 

5. Conclusions 
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What’s a stencil ? 

 Nearest neighbor computations on structured grids  
(1D…ND array) 

 

 Weights can be constant or vary depending 
on space, time, or data 

 

 Used in applications such as PDE 
solvers, astrophysics, 
climate simulation, image filtering  

 

 Auto-tuning target: kernels with separate read 
and write arrays 
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Studied Kernels 
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Auto-tuner Overview 
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Auto-tuner Overview 
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Auto-tuner Overview 
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Optimized 
Library 

• Input is a high-level description/implementation of the kernel 
 
• Framework parses into an internal representation 
 
• Strategy Engines + Backend Code Generators optimize & 
generate candidate implementations 
 
• End result: an optimized library containing best implementation 



Many-/Multi-core Strategy Engine 

 Multicore strategy engine divides computation into cache 
blocks and distributes blocks over cores 

 

 We use a single-program, multiple-data (SPMD) model 
implemented with POSIX Threads (Pthreads) 

 All threads created at the beginning of the application 

 

 

 Tuner produces initialization routine that exploits first- 
touch policy to ensure proper NUMA-aware allocation 
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Many-/Multi-core Strategy Engine 
 Strategy Engine explores a number of auto-tuning optimizations: 

 loop unrolling/register blocking 

 cache blocking 

 constant propagation / common subexpression elimination 

 

 

 

 

 

 

 

 

 Future Work: 

 cache bypass (e.g. movntpd) 

 software prefetching 

 SIMD intrinsics 

 data structure transformations 
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CUDA Strategy Engine 

 Strategy Engine parallelizes stencils using CUDA 

 Exploit spatial locality by ensuring adjacent CUDA 
threads operate on adjacent memory locations 

 Memory coalescing 

 

 Auto-tuning 
 Explore shape of CUDA thread block 

 Like register blocking optimization in Multi-core 

 

 Future Work: 

 Exploit temporal locality 
 Properly use memory in all levels of the hierarchy 
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Results Key 
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STREAM  

Predicted 

Original code in Fortran 

Auto-parallelized using the stencil framework (no tuning) 

Auto-parallelized plus NUMA optimization 

Auto-tuned and auto-parallelized using the stencil framework 

Memory-bound performance predicted using OpenMP STREAM 
benchmark 

Performance of a NUMA-aware auto-parallelized with OpenMP  
version of the original code 



Laplacian Results 
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Auto-tuning 

Auto- 

parallelization 

serial 

reference 

OpenMP 

Comparison 

Auto-NUMA STREAM 

Predicted 

• Auto-parallelization by itself does not scale well on CPUs 
• requires NUMA-aware alloc to get decent 
performance 
• our auto-parallelizer gets equal or better 
performance than OpenMP 
 

•Overall speedups of up to 22x on Nehalem (vs. serial 
reference), 1.5x on GTX280 



Divergence Results 
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Auto-tuning 

Auto- 

parallelization 

serial 

reference 

OpenMP 

Comparison 

Auto-NUMA STREAM  

Predicted 

• Less benefit from auto-tuning on cache-based 
architectures here 

• As we expect based on arithmetic intensity 
 
• Overall speedups of up to 13x on Victoria Falls,  
2x on GTX280 



Gradient Results 
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Auto-tuning 

Auto- 

parallelization 

serial 

reference 

OpenMP 

Comparison 

Auto-NUMA STREAM 

Predicted 

• Heavily memory-bound, so architectures with high 
memory BW get higher performance 
 
• Overall speedups of up to 8.1x on Nehalem,  
1.7x on GTX280 



Bilateral Filter Results (r=3) 
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Auto-tuning 

Auto- 

parallelization 

serial 

reference 

OpenMP 

Comparison 

Auto-NUMA 

• Heavily compute-bound, plus lookup for filter weights 
• Most of auto-tuning benefit comes from better 
innermost-loop 

 
• Overall speedups of 14.8x for Barcelona, 20.7x for 
Nehalem 
 
• Near linear speedup as cores increase 
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High Level Languages 

Common complaint from domain scientists: too 
much overhead in experimenting with kernels 
  Must manage memory, array layouts, etc 

 Languages like Ruby & Python support high-
level programming with frameworks & 
libraries 

 

 What would productive parallel stencil 
support look like in Ruby? 
  Must deal with lack of thread-safety in interpreter 

27 



One Approach 

 Solution: write stencil in Ruby 
  Use conventions to simplify code structure 

 

Then, transparently: 

 Use Ruby’s introspective nature to parse code 

 Dynamically translate to C, compile, link, and 
execute translated code on Ruby data 
structure 

 

 Only translate the stencil kernel: the rest is 
still in pure Ruby 28 



Example 
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class LaplacianKernel < JacobiKernel 
def kernel(in_grid, out_grid) 
    in_grid.each_interior do |center| 
      in_grid.neighbors(center,1).each do |x| 
        out_grid[center] = out_grid[center]  
          + 0.2 * in_grid[x] 
      end 
    end 
  end 
end 
 

VALUE kern_par(int argc, VALUE* argv, VALUE self) {  
struct NARRAY *temp_4; 
double* in_grid; 
GetNArray(argv[0], temp_4); 
in_grid = (double*) NA_PTR(temp_4, 0); 
struct NARRAY *temp_5; 
double*  out_grid; 
GetNArray(argv[1], temp_5); 
out_grid = (double*) NA_PTR(temp_5, 0); 
int temp_8; 
int temp_7; 
int temp_6; 

 
#pragma omp parallel for default(shared)  private 
(temp_6,temp_7,temp_8) 
for (temp_8=1; temp_8<256-1; temp_8++) { 
for (temp_7=1; temp_7<256-1; temp_7++) { 
for (temp_6=1; temp_6<256-1; temp_6++) { 
int center = INDEX(temp_6,temp_7,temp_8); 
out_grid[center] = (out_grid[center] 
    +(0.2*in_grid[INDEX(temp_6-1,temp_7,temp_8)])); 
out_grid[center] = (out_grid[center] 
    +(0.2*in_grid[INDEX(temp_6+1,temp_7,temp_8)])); 
out_grid[center] = (out_grid[center] 
    +(0.2*in_grid[INDEX(temp_6,temp_7-1,temp_8)])); 
out_grid[center] = (out_grid[center] 
    +(0.2*in_grid[INDEX(temp_6,temp_7+1,temp_8)])); 
out_grid[center] = (out_grid[center] 
    +(0.2*in_grid[INDEX(temp_6,temp_7,temp_8-1)])); 
out_grid[center] = (out_grid[center] 
    +(0.2*in_grid[INDEX(temp_6,temp_7,temp_8+1)])); 
;}}} 
return Qtrue;} 

When the Ruby program calls kernel() this 
is automatically generated, compiled, and 
run 



Results 

 Comparable performance to OpenMP+C 

 First execution takes more time (JITing) 
  Subsequent executions are fast 
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Example: Laplacian on Nehalem (25 iterations) 
 
• Ruby performance is between C+OpenMP and  
C+OpenMP+NUMA 
 
• Ruby version is not NUMA-aware 
 
• Multicore stencil support in Ruby is >500x 
faster than a pure Ruby implementation 

Ruby Framework C + OpenMP C+OpenMP w/NUMA Initialization 



Summary 

 Summer 2008 Retreat: feedback that auto-tuners are 
not very auto 

 Winter 2008 Retreat: Presented idea of auto-tuners for a 
class of kernels 
 Serial results for 1 kernel 

 Now: Parallel stencil auto-tuning for many kernels on 
many architectures 

 Obtain performance and platform portability 

 High level dynamic languages can use same techniques 
to produce portable efficient code 

 Lots of future work: better CUDA/OpenCL support, widen 
class of supported stencils 
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