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Conventional Optimization 

 Take one kernel/application 
 Perform some analysis 

 Research literature for appropriate optimizations 

 Implement some of them by hand-optimizing for one 
target machine 

 Iterate  

 

 Result:  

 Improve performance for one kernel on one 
computer 
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Conventional Auto-tuning 

 Automate the code generation and tuning process 
 Perform some analysis of the kernel 

 Research literature for appropriate optimizations 

 Implement a code generator and search mechanism 

 Explore optimization space 

 

 Result: 

 Improve performance for one kernel on many computers 
 Provides performance portability 

 

 Downside: 
 Autotuner creation time is substantial 

 Must reinvent the wheel for every kernel 
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Motif-specific Frameworks for Auto-tuning 

 Programmers express calculation in high-level way 

 Kernel represented internally in abstract form 

 Auto-tuning system uses code transformation and 
generation to implement domain-specific transformations 

 

 
 

 Result: 

 Significantly improve performance for many kernels in a 
domain on many computers. 
 Obtain performance portability without sacrificing productivity 
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What’s a stencil ? 

 Nearest neighbor computations on structured grids  
(1D…ND array) 

 

 Weights can be constant or vary depending 
on space, time, or data 

 

 Used in applications such as PDE 
solvers, astrophysics, 
climate simulation, image filtering  

 

 Auto-tuning target: kernels with separate read 
and write arrays 
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Studied Kernels 
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Auto-tuner Overview 
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Auto-tuner Overview 
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Auto-tuner Overview 
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Optimized 
Library 

• Input is a high-level description/implementation of the kernel 
 
• Framework parses into an internal representation 
 
• Strategy Engines + Backend Code Generators optimize & 
generate candidate implementations 
 
• End result: an optimized library containing best implementation 



Many-/Multi-core Strategy Engine 

 Multicore strategy engine divides computation into cache 
blocks and distributes blocks over cores 

 

 We use a single-program, multiple-data (SPMD) model 
implemented with POSIX Threads (Pthreads) 

 All threads created at the beginning of the application 

 

 

 Tuner produces initialization routine that exploits first- 
touch policy to ensure proper NUMA-aware allocation 
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Many-/Multi-core Strategy Engine 
 Strategy Engine explores a number of auto-tuning optimizations: 

 loop unrolling/register blocking 

 cache blocking 

 constant propagation / common subexpression elimination 

 

 

 

 

 

 

 

 

 Future Work: 

 cache bypass (e.g. movntpd) 

 software prefetching 

 SIMD intrinsics 

 data structure transformations 
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CUDA Strategy Engine 

 Strategy Engine parallelizes stencils using CUDA 

 Exploit spatial locality by ensuring adjacent CUDA 
threads operate on adjacent memory locations 

 Memory coalescing 

 

 Auto-tuning 
 Explore shape of CUDA thread block 

 Like register blocking optimization in Multi-core 

 

 Future Work: 

 Exploit temporal locality 
 Properly use memory in all levels of the hierarchy 
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Results Key 
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STREAM  
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Original code in Fortran 

Auto-parallelized using the stencil framework (no tuning) 

Auto-parallelized plus NUMA optimization 

Auto-tuned and auto-parallelized using the stencil framework 

Memory-bound performance predicted using OpenMP STREAM 
benchmark 

Performance of a NUMA-aware auto-parallelized with OpenMP  
version of the original code 



Laplacian Results 
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Auto-tuning 

Auto- 

parallelization 

serial 

reference 

OpenMP 

Comparison 

Auto-NUMA STREAM 

Predicted 

• Auto-parallelization by itself does not scale well on CPUs 
• requires NUMA-aware alloc to get decent 
performance 
• our auto-parallelizer gets equal or better 
performance than OpenMP 
 

•Overall speedups of up to 22x on Nehalem (vs. serial 
reference), 1.5x on GTX280 



Divergence Results 
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Auto-tuning 

Auto- 

parallelization 

serial 

reference 

OpenMP 

Comparison 

Auto-NUMA STREAM  

Predicted 

• Less benefit from auto-tuning on cache-based 
architectures here 

• As we expect based on arithmetic intensity 
 
• Overall speedups of up to 13x on Victoria Falls,  
2x on GTX280 



Gradient Results 
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Auto-tuning 

Auto- 

parallelization 

serial 

reference 

OpenMP 

Comparison 

Auto-NUMA STREAM 

Predicted 

• Heavily memory-bound, so architectures with high 
memory BW get higher performance 
 
• Overall speedups of up to 8.1x on Nehalem,  
1.7x on GTX280 



Bilateral Filter Results (r=3) 
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Auto-tuning 

Auto- 

parallelization 

serial 

reference 

OpenMP 

Comparison 

Auto-NUMA 

• Heavily compute-bound, plus lookup for filter weights 
• Most of auto-tuning benefit comes from better 
innermost-loop 

 
• Overall speedups of 14.8x for Barcelona, 20.7x for 
Nehalem 
 
• Near linear speedup as cores increase 
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High Level Languages 

Common complaint from domain scientists: too 
much overhead in experimenting with kernels 
  Must manage memory, array layouts, etc 

 Languages like Ruby & Python support high-
level programming with frameworks & 
libraries 

 

 What would productive parallel stencil 
support look like in Ruby? 
  Must deal with lack of thread-safety in interpreter 
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One Approach 

 Solution: write stencil in Ruby 
  Use conventions to simplify code structure 

 

Then, transparently: 

 Use Ruby’s introspective nature to parse code 

 Dynamically translate to C, compile, link, and 
execute translated code on Ruby data 
structure 

 

 Only translate the stencil kernel: the rest is 
still in pure Ruby 28 



Example 
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class LaplacianKernel < JacobiKernel 
def kernel(in_grid, out_grid) 
    in_grid.each_interior do |center| 
      in_grid.neighbors(center,1).each do |x| 
        out_grid[center] = out_grid[center]  
          + 0.2 * in_grid[x] 
      end 
    end 
  end 
end 
 

VALUE kern_par(int argc, VALUE* argv, VALUE self) {  
struct NARRAY *temp_4; 
double* in_grid; 
GetNArray(argv[0], temp_4); 
in_grid = (double*) NA_PTR(temp_4, 0); 
struct NARRAY *temp_5; 
double*  out_grid; 
GetNArray(argv[1], temp_5); 
out_grid = (double*) NA_PTR(temp_5, 0); 
int temp_8; 
int temp_7; 
int temp_6; 

 
#pragma omp parallel for default(shared)  private 
(temp_6,temp_7,temp_8) 
for (temp_8=1; temp_8<256-1; temp_8++) { 
for (temp_7=1; temp_7<256-1; temp_7++) { 
for (temp_6=1; temp_6<256-1; temp_6++) { 
int center = INDEX(temp_6,temp_7,temp_8); 
out_grid[center] = (out_grid[center] 
    +(0.2*in_grid[INDEX(temp_6-1,temp_7,temp_8)])); 
out_grid[center] = (out_grid[center] 
    +(0.2*in_grid[INDEX(temp_6+1,temp_7,temp_8)])); 
out_grid[center] = (out_grid[center] 
    +(0.2*in_grid[INDEX(temp_6,temp_7-1,temp_8)])); 
out_grid[center] = (out_grid[center] 
    +(0.2*in_grid[INDEX(temp_6,temp_7+1,temp_8)])); 
out_grid[center] = (out_grid[center] 
    +(0.2*in_grid[INDEX(temp_6,temp_7,temp_8-1)])); 
out_grid[center] = (out_grid[center] 
    +(0.2*in_grid[INDEX(temp_6,temp_7,temp_8+1)])); 
;}}} 
return Qtrue;} 

When the Ruby program calls kernel() this 
is automatically generated, compiled, and 
run 



Results 

 Comparable performance to OpenMP+C 

 First execution takes more time (JITing) 
  Subsequent executions are fast 
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Example: Laplacian on Nehalem (25 iterations) 
 
• Ruby performance is between C+OpenMP and  
C+OpenMP+NUMA 
 
• Ruby version is not NUMA-aware 
 
• Multicore stencil support in Ruby is >500x 
faster than a pure Ruby implementation 

Ruby Framework C + OpenMP C+OpenMP w/NUMA Initialization 



Summary 

 Summer 2008 Retreat: feedback that auto-tuners are 
not very auto 

 Winter 2008 Retreat: Presented idea of auto-tuners for a 
class of kernels 
 Serial results for 1 kernel 

 Now: Parallel stencil auto-tuning for many kernels on 
many architectures 

 Obtain performance and platform portability 

 High level dynamic languages can use same techniques 
to produce portable efficient code 

 Lots of future work: better CUDA/OpenCL support, widen 
class of supported stencils 
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