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PROBLEM STATEMENT

Chips are becoming increasingly parallel, meaning

that more scheduling decisions have to be made. We
most now manage both spatial and temporal resource
allocation of shared physical resources. At the same
time, the growing prevalence of mobile devices has
made power and energy first class citizens in system
management. How can we get efficient execution on a
diversity of platforms with applications that have
different resource usage patterns?

The combinatorial scheduling problem worsens if all
possible allocations of resources have to be tested at
runtime. Instead, we propose to predict the effects
changing an allocation will have on performance, and
to use these predictions to make allocation decisions.
This plan requires us to create models that capture the
relationship between allocations and performance.

DESIGN OVERVIEW

We collect application
behaviour and use it to create
predictive models. We use the
models as input to the
scheduler to make decisions.
Model accuracy is enhanced
by the performance isolation
provided by a set of hardware
partitioning mechanisms.

PARTITIONING MECHANISMS

Core Partitioning:

Easily partitioned by assigning threads to cores in a
partition. Application chooses which threads run on
which cores.

OS priorities
User settings
Machine limits

Cache Capacity Partitioning (for shared caches):
Caches can be partitioned by ways or banks. For
manycore chips we can use bank based, allowing an
application can be allocated more local banks.

Bandwidth Partitioning:

Using Globally Synchronous Frames (Lee et al. ISCA
2008) we can guarantee minimum bandwidth
(Packets/Frame) and bound maximum delay, while also
providing differentiated services.
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MODEL FORMULATION

We create models from samples of performance
data, and use them to predict the performance of
allocations not included in the original sample.
The inputs to our models are performance and
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and other features. We use the active-set Name Cycles Tnstructions | OF Chip Accesses | Cache Access
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algorithm for nonlinear constrained optimization
(fmincon in Matlab).

METHODOLOGY
We use Virtutech Simics with custom modules
supporting hardware partitioning to collect
performance data to create the models. We
created synthetic benchmarks with varying
types of resource requirements to explore the
space of possible behaviours.
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Table shows the mean accuracy (standard dev. accuracy)
of the response surface model. Some metrics of
performance were much easier to predict than others.
Outliers severely degrade mean accuracy.

DECISION-MAKING RESULTS

SYNTH ETIC BENCHMARKS D | Name A | Name B | Cores A | Cache A | OfichipBW A | Cores B | Cache B | OfichipBW B
T | pocobo | pbebbb 1 16384 | 2112 1 16381 | 3
2 | pbeobo | pocbbb 512 300 32768 1033
v | Cace | Ofchip BW | Deseription 3 | pocbbo | pbcobb 1 300 7 1197
Benefity 1_[ pocobb | pbcbbo 1 16384 1000 7 16384 3515
led) 5| pocobo | pocobo 1 16384 2033 i 16384 2031
G | pbebbb | pbebbb 1 16381 3079 1 16381 3072
7| pbebbb | pbebbo 1 16381 1009 7 16384 1026
8| pbebbb | pbeobb 1 16381 1000 7 16381 1036
9 [ pbebbb | pbeobo 7 24510 1022 1 2048 500
10 | pbebbb | pocbbb 512 300 32768 4033
11| pbebbb | pocbbo 7 21510 1022 1 2018 500
phebbb | pocobb 19,386 T.030 13,382 1022

FUTURE WORK =

+ Retrain models on different sample sizes Decisions made when allocating resources between two

- Try making decisions with heuristic search benchmarks. In red cases, the decisions made based on
. the models are counter to what we expected. In orange

+ Improve realism of energy model

- o cases it was unclear whether the decisions made were
* Make temporal as well as spatial decisions correct or not. Model inaccuracy results in poor decisions



