
1.Request is identified based on target address
as being a VLS access

2. pbase holds physical base address, used
instead of TLB lookup

3.Multiple way lookups avoided on a VLS access
4.Replacement policy respects partitioning
5. pbound holds number
 of pages given to VLS

6. Special network allows
 direct VLS-to-VLS data
 streaming via DMA
 engines

BENCHMARKS
Hand-tuned versions of
several kernels designed
to run on pure cache or
LS machines.
Parallelized with pthreads.
Run to completion.

PROBLEM STATEMENT
Software-managed local stores are more efficient
than hardware-managed caches for some apps, yet
their use has been confined to embedded systems.
Local stores are problematic in general-purpose
systems because they add to process state on
context switches, and because they require fast data
memory close to the processor that might be better
spent as cache. We propose the use of virtualized
local stores to provide the benefits of a software-
managed memory hierarchy in a general-purpose
system. A VLS is mapped into the virtual address
space of a process to allow software management,
but is kept in a partition of the hardware-managed
cache when active.

Henry Cook

RELATED WORK
Smart Memories, TRIPS, ALP all provide heavyweight
reconfigurability. Various embedded processors have
used way-based partitioning and locking, but
generally are uni-purpose/uni-process.

METHODOLOGY
We used a combination of Virtutech Simics and
Wisconsin GEMS to evaluate the detrimental effects of
a fixed allocation between hardware and software-
managed local memories on various computational
kernels. General-purpose multiprocessor workloads
will consist of all of these kernels and more.

POSSIBLE MEMORY CONFIGURATIONS

FUTURE WORK
• More multithreaded application use cases
• Use of VLS in multiple levels of hierarchy
• VLS-to-VLS communication
• Energy efficiency

Virtualizing Local Stores
Enabling Software-Managed Memory Hierarchies in Mainstream Computing

STATIC ALLOCATION OF BOTH

HW-MANAGED CACHES

VIRTUAL LOCAL STORES

MICROBENCHMARK RESULTS

MACHINE
16 cores, 800MHz
16 KB 2-way L1 I-Cache
32 KB 4-way L1 D-Cache

with VLS up to 3-way
512 KB 16-way unified L2
1 DMA engine per core

Some kernels perform better with local stores, some do
not. Static allocations that limit the size of each partition
are detrimental to both.

Hide locality from software by
automatically moving data.
Require prefetch engines for
performance. Inflexible
mappings and replacement
policies. Productive.

Provides both A and B within
a single system. Presence of
some cache improves pro-
grammability. Benchmarks
cannot use local store until
they have been rewritten.

Provides benefits of C, but is
lightweight and dynamically
reconfigurable. Programmers
have power to choose between
A and B on a per routine basis.
Fits OS/multiprocessor goal.

ADDRESS SPACE MAPPINGS

VLS MECHANISMS

Mapping of virtual local stores from the VA space
to physical pages, and how data in those pages
is indexed in the on-chip memory hierarchy.

SW-MANAGED LOCAL STORES

Expose locality to software,
requiring explicit DMA control.
Allow macroscopic prefetching
and other optimizations. Better
flexibility and simple high-
bandwidth transfers. Efficient.

SPEECH APPLICATION RESULTS
Each phase of
the algorithm
sees different
benefits under
HW or SW-man.
VLS allows us to
pick between
them per-phase.

Load caused by
context switches
is reduced: VLS
data is backed
by phys. mem.

