Tessellation Operating System
Building a real-time, responsive, high-throughput client OS
for many-core architectures

Parallel Computing
Laboratory

Juan A. Colmenares,! Sarah Bird,! Gage Eads,! Steven Hofmeyr,2 Albert Kim,! Rohit Poddar,! Hilfi Alkaff,! Krste Asanovic,! and John Kubiatowiczl
I Par Lab, UC Berkeley — 2 Future Technologies Group, LBNL

http://tessellation.cs.berkeley.edu

4. Beneficial Hardware Enhancements

Hardware-acceleration for Inter-cell Channels
Improves efficiency of inter-cell communication

1. Basic Goals

 Support a dynamic mix of high-throughput parallel, interactive, and real-time
applications

* Allow applications to consistently deliver performance in presence of other
applications with conflicting requirements

* Enable adaptation to changes in the application mix and resource availability

2. Design Principles

Two-level Scheduling

‘Level 2 AR ?gglfllcatlons utilize their resources in any way they
rine- ?ramed Application- « Other components of the system cannot interfere
specific Scheduling

\. J with their use of resources
‘Level 1 3. Chunks of resources distributed to application or
Coarse-grained Resource system components
| Allocation and Distribution) |« Option to simply turn off unused resources

Space-Time Partitioning
« Spatial Partition: Key for performance isolation
» Hard boundaries and controlled communication between partitions

« Each partition receives a vector of basic resources:
« A number of hardware threads, a portion of physical memory,
cache segments, and memory bandwidth

* A partition may also receive
» Exclusive access to other resources (e.g., a hardware device and
raw storage partition)
» Guaranteed fractional services from other partitions (e.g., network
service)

Spatial partitioning is noft static; it may vary over time

« Partitioning adapts to needs of the system
- Partitions can be time multiplexed; resources are gang-scheduled

3. The Cell: Our Partitioning Abstraction

Cell A

e User-level software container with T v—

guaranteed access to resources SpaceA Space B
. . \ 2
« Basic properties of a cell 0\‘@‘\“6 [%%%éJ %%*]
—Full control over resources it e and-tovel [ZH d-IeveIMemory}
OWNS When mapped to Scheduling Management
hardware

—One or more address spaces
(protection domains)

— Efficient inter-cell
communication channels

Space

>
N Time

| }
|

Yellow partition grows
due to system adaptation

Component-based Model with
Composable Performance

» Applications = Set of Barallel
interacting comPonents Library EE
deployed on different cells w Device
» Applications split into
performance-incompatible

and mutually distrusting cells @
 OS services are independent
agents that provide QoS Real-time Apg‘i’gjﬁm

Cell

File
Service

4. Resource-management Software Architecture

I ™ Y
@II Creation Major \ ((A |
and Resizing Change
Requests Request Global Policies /
from Users User Policies &

Preferences

ACK/NACK

ACK/NACK

Minor
Changes

All system
resources

ell group
CcelD,

with fraction
of resources

Ccel D JCcell S I Ccel >,

Partition
Mapping and
Multiplexing

Offline Models
& Behavioral
Parameters

- (Current Resources)

ﬂz’olicy Service

Partition
Mechanism
Layer E—
Performance
Counters

Partitionable Hardware Resources

+— Kernel—

Tessellation

Message Construction

~

Header

Core

L __Tx Buffer

Channel A

Hardware

DMA Req S
Protection, Qo
\. .

Translation

Interrupt &
Exception
Detection

Process 1

(Processn
Channel

Message Processing .4-#
3

[DMA Handler]

. On-Chip

Check -I I ;I:lmtrs;rk
Rx Buffer Q:L) DMA

Arbiter engine

State

« Channel virtualization enables use by multiple cells

« Hardware-based protection, translation, and message-processing
mechanisms minimize kernel intervention

QoS guarantees in the channel state, enforced in QoS block

Hardware Partitioning Mechanisms

* Provide stronger performance isolation between cells
* Besides those found on commodity hardware, we propose the use
of the following mechanisms:

Memory Hierarchy
Bandwidth Partitioning

[Proc A] [Proc B] [Pmc C] [Proc D]
............. | D T
VC 0 ™ VC 0 ™
(Fro0) (Fro0) E
VC1 VC1
(Frl) : (Frl) E
VC2 _ VC2 R
(Fr2) AlB) (Fr2) D %
Frame 0
Frame 1 Frame 1
Frame 2 \ Frame 2
frame T
_ rame 3
window
shift Source:
J. W. Lee et al.
* Globally Synchronized Frames (GSF)

A frame-based QoS System
 An allocation of flits are guaranteed
to each core per frame (time window)
* Excess flits in a frame are shared

Reference: J. W. Lee et al. “Globally Synchronized Frames for
Guaranteed Quality-of-Service in On-Chip Networks,” ISCA

2008

_Way 0%

Way 1\
A% . Allocated
e 3\ to LA

f %Wﬂ?f\ Allocated) :

N Allucated A
-: EWay?\ to LC 1 :

Way- and Bank-Based
Cache Partitioning

] Allocated
f to LA

- | Allocated
to LB

Allocated
to LC

to LB l I

F‘hs
Eank

» Two types of cache partitioning allow
for a wide variety of configurations

» Applications can be assigned cache
slices — particular ways in a given bank

 Cache slices can be reassigned to
represent the changing needs of the
system

5. Implementation Status

Kernel User-level Network Service
Runtime Support (including TCP/IP stack)
~35K LOC ~10K LOC ~40K LOC

» Partitioning support

» Cores, caches (via page coloring), and memory bandwidth partitioning (on
RAMP simulator)

* Inter-cell channels (via ring buffers in shared memory)

« Hardware channels implementation currently under development on RAMP
simulator

» User-level frameworks for implementing

« Composable cooperative schedulers (i.e., Lithe)

* Preemptive schedulers (e.g., EDF)

* Basic Services

« Network Service consisting of a device driver and TCP/IP stack

* File Service, GUI Service, and Policy Service are under development

» Gang Scheduling for Cells

« Imp

 Currently two ports

e Inte

emented a communication-free version and a centralized version

x86 platforms (e.g., 32-core Nehalem system)

* FPGA-based simulation of 64 1-GHz SPARC V8 cores (RAMP Gold)
* Current prototype was derived from an early version of Akaros
(http://akaros.cs.berkeley.edu)

Research supported by Microsoft Award #024263, Intel Award #024894, matching U.C. Discovery
funding (Award #D1G07-102270), and DOE ASCR FastOS Grant #DE-FG02-08ER25849

