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4. Beneficial Hardware Enhancements

Hardware-acceleration for Inter-cell Channels
Improves efficiency of inter-cell communication

1. Basic Goals

 Support a dynamic mix of high-throughput parallel, interactive, and real-time
applications

* Allow applications to consistently deliver performance in presence of other
applications with conflicting requirements

* Enable adaptation to changes in the application mix and resource availability

2. Design Principles
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Space-Time Partitioning
« Spatial Partition: Key for performance isolation
» Hard boundaries and controlled communication between partitions

« Each partition receives a vector of basic resources:
« A number of hardware threads, a portion of physical memory,
cache segments, and memory bandwidth

* A partition may also receive
» Exclusive access to other resources (e.g., a hardware device and
raw storage partition)
» Guaranteed fractional services from other partitions (e.g., network
service)

Spatial partitioning is noft static; it may vary over time

« Partitioning adapts to needs of the system
- Partitions can be time multiplexed; resources are gang-scheduled

3. The Cell: Our Partitioning Abstraction
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4. Resource-management Software Architecture
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« Channel virtualization enables use by multiple cells

« Hardware-based protection, translation, and message-processing
mechanisms minimize kernel intervention

QoS guarantees in the channel state, enforced in QoS block

Hardware Partitioning Mechanisms

* Provide stronger performance isolation between cells
* Besides those found on commodity hardware, we propose the use
of the following mechanisms:
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* Globally Synchronized Frames (GSF)

A frame-based QoS System
 An allocation of flits are guaranteed
to each core per frame (time window)
* Excess flits in a frame are shared

Reference: J. W. Lee et al. “Globally Synchronized Frames for
Guaranteed Quality-of-Service in On-Chip Networks,” ISCA
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» Two types of cache partitioning allow
for a wide variety of configurations

» Applications can be assigned cache
slices — particular ways in a given bank

 Cache slices can be reassigned to
represent the changing needs of the
system

5. Implementation Status

Kernel User-level Network Service
Runtime Support (including TCP/IP stack)
~35K LOC ~10K LOC ~40K LOC

» Partitioning support

» Cores, caches (via page coloring), and memory bandwidth partitioning (on
RAMP simulator)

* Inter-cell channels (via ring buffers in shared memory)

« Hardware channels implementation currently under development on RAMP
simulator

» User-level frameworks for implementing

« Composable cooperative schedulers (i.e., Lithe)

* Preemptive schedulers (e.g., EDF)

* Basic Services

« Network Service consisting of a device driver and TCP/IP stack

* File Service, GUI Service, and Policy Service are under development

» Gang Scheduling for Cells

« Imp

 Currently two ports

e Inte

emented a communication-free version and a centralized version

x86 platforms (e.g., 32-core Nehalem system)

* FPGA-based simulation of 64 1-GHz SPARC V8 cores (RAMP Gold)
* Current prototype was derived from an early version of Akaros
(http://akaros.cs.berkeley.edu)
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