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Abstract
Tessellation is a manycore OS predicated on two cen-

tral ideas: Space-Time Partitioning (STP) and Two-Level
Scheduling. STP exploits novel hardware and software
mechanisms to provide performance isolation and strong
partitioning of resources (such as cores or memory band-
width) among interacting software components, called
“Cells”. Two-Level Scheduling separates global deci-
sions about the allocation and distribution of resources to
Cells from application-specific scheduling of resources
within Cells. We describe Tessellation’s Cell model, its
resource allocation architecture, and basic policies for re-
source management. We present results from our proto-
type running on both an 8-core Nehalem machine and
an FPGA-emulation of a 64-core machine with memory-
bandwidth partitioning hardware.

1 Introduction
Current trends suggest that highly parallel manycore
systems (with 64 or more cores) will soon be main-
stream. Increasing core counts presents serious chal-
lenges for applications attempting to harvest parallel re-
sources and for the operating systems supporting them.
Unlike servers, which exploit parallelism across indepen-
dent transactions from multiple users, single-user clients
will require parallelized applications to benefit from a
manycore platform. Future client devices will run a mix
of interactive, real-time, and batch applications simulta-
neously. In fact, the applications of tomorrow are likely
to consist of variety of components – each of which
presents complex and differing resource requirements.

We believe that operating systems of the future will re-
quire a radically new structure. One basic assumption is
that the parallelism exhibited by client applications will
be more fragile than that of high-performance computing
applications; consequently, it is important not to disturb
their execution with unexpected variations in resource
availability or unexpected events such as interrupts. Fur-
ther, real-time and QoS requirements are easier to meet
in a stable and noiseless environment.

To this end, this paper investigates the combina-
tion of two complementary ideas: Space-Time Parti-
tioning and Two-Level Scheduling as embodied in our
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Figure 1: Decomposing an application into a set of commu-
nicating components and services running with QoS guaran-
tees within Cells. Tessellation provides Cells that host device
drivers and OS services.

new OS, called “Tessellation.” Space-Time Partitioning
(STP) [16], exploits novel software layering and hard-
ware mechanisms (when available) to support a model
of computation in which applications are divided into
performance-isolated, gang-scheduled “Cells” commu-
nicating through secure channels; see Figure 1. STP pro-
vides guaranteed fractions of resources (e.g. processors,
memory bandwidth, or system services) to Cells. In addi-
tion, STP offers a natural way to incorporate protection,
fault-containment, and security policies.

Complementing STP, Two-Level Scheduling separates
global decisions about the allocation and distribution of
resources to Cells from application-specific scheduling
of resources within Cells. The global resource distribu-
tion process (i.e. the first level) is one of the novel el-
ements of our approach and is discussed in detail later.
Once resources have been assigned to Cells, STP guar-
antees that user-level schedulers within Cells (i.e. the
second level) may utilize resources as they wish – with-
out interference from other Cells or from the OS. It is the
separation of resource distribution from usage that we
believe makes Two-Level Scheduling more scalable than
other approaches and better able to meet the demands of
parallel client applications.

2 Overview of Tessellation

Tessellation is a manycore OS based on Space-Time Par-
titioning (STP) and Two-Level Scheduling. This section
provides an overview of STP, the Cell model, and Two-
Level Scheduling in Tessellation.



2.1 Space-Time Partitioning
A spatial partition (or “partition” for short) is
a performance-isolated unit of resources maintained
through a combination of software and hardware mecha-
nisms. Managed resources include gang-scheduled hard-
ware thread contexts, guaranteed fractions of shared re-
sources (cache slices, memory bandwidth), access to OS
services, and fractions of the power or energy budget. At
any point in time, Tessellation divides the hardware into a
set of simultaneously-resident partitions; over time, par-
titioning varies with the needs of the OS and applications
– hence the “time” component of the term “STP.”

Support for STP in Tessellation consists of a combi-
nation of software and hardware mechanisms; see Fig-
ure 2. The partition-enforcing “Partition Mechanism
Layer” of Tessellation has some similarities to a hyper-
visor but with a crucial difference: its sole task is to
provide performance-isolated, QoS-guaranteed contain-
ers for applications and OS services. Decisions about
the time evolution of hardware partitions based on global
constraints and policies are made by the “first level” of
Two-Level Scheduling, mentioned previously. Although
Tessellation runs on existing multicore systems, it can
also exploit hardware enhancements when available.

2.2 The Cell Model
Tessellation exports STP to applications and OS services
through an abstraction called a Cell. A Cell is a con-
tainer for parallel software components providing guar-
anteed access to resources, i.e. the performance and be-
havior of an isolated machine. Resources are guaranteed
as space-time quantities, such as “4 processors for 10%
of the time” or “2 GB/sec of bandwidth”. Although Cells
may be time-multiplexed, hardware thread contexts and
resources are gang-scheduled such that Cells are unaware
of this multiplexing. Resources allocated to a Cell are
owned by that Cell exclusively until they are explicitly
revoked, enabling application-specific optimizations.

Unexpected virtualization of physical resources does
not occur within a Cell. Once the Cell is mapped, a Cell-
level scheduler (running at user-level) is responsible for
mapping threads to hardware contexts. Other resources
are also explicitly managed by Cell-level schedulers. For
example, there is no paging of physical memory unless a
paging library is linked in to the user-level runtime, and
each cell’s runtime has control over the delivery of events
such as inter-cell messages, timer interrupts, exceptions,
and faults. Cells start with a single protection domain;
however, they can create additional domains as desired.

One possible objection to this paradigm is that the bur-
den placed on application developers is increased since
they are required to explicitly manage resources. How-
ever, parallel application programmers are already ac-
customed to linking their programs against specific user-
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Figure 2: Space-Time Partitioning in Tessellation: a snapshot
in time with four spatial partitions.

level thread libraries, some of which change system be-
havior or runtime environment semantics [11].

Inter-Cell Communication: Channels provide a con-
trolled mechanism for inter-cell communication. A chan-
nel has clearly defined semantics and provides perfor-
mance and security isolation between Cells. The setup
and tear-down of a channel is privileged and strictly con-
trolled by the OS. Once constructed, however, a channel
provides fast asynchronous communication with user-
level operations.

Utilizing Cells for OS Services: Cells provide a con-
venient abstraction for building OS services such as de-
vice drivers, network interfaces and file systems. Tes-
sellation adopts a philosophy similar to that of microker-
nels [7]. Unlike traditional microkernels, however, mul-
tiple components can be mapped to the hardware simul-
taneously – allowing rapid inter-domain communication.
Further, each interacting component is explicitly parallel
and performance-isolated from other components.

Partitioning OS functionality into a set of interacting
Cells provides predictable and reliable behavior due to
limited interaction with the rest of the system. QoS guar-
antees on shared services can be enforced by restricting
channel communication. Alternatively, the capacity of
overloaded services can be increased by resizing Cells.

2.3 Two-level Scheduling in Tessellation
Centralized scheduling works in a uniprocessor envi-
ronment where applications have a limited number of
threads and expect to be time-multiplexed onto the sin-
gle CPU. In contrast, Tessellation separates global deci-
sions about the allocation and distribution of resources
from local decisions about the usage of resources. The
result is more scalable when abundant parallel resources
are utilized by interacting parallel components: The re-
source allocation process can focus on the impact of re-
source quantities on Cell execution – leaving the fine de-
tails about how to utilize these resources to application-
specific schedulers within Cells.



Scheduling Resources To Cells: Tessellation makes
changes in resource distribution infrequently to amortize
the cost of the global decision making process while fur-
ther allowing time for application-level scheduling deci-
sions to be effective. The resource allocator, described
in detail in Section 3, distributes partitionable resources
among cells and exercises the option to reserve or deac-
tivate resources to guarantee future responsiveness or to
optimize energy consumption.

Scheduling Within a Cell: The Cell-level scheduler
runs as a user-level library and manages threads and
cores within a Cell. Since a Cell’s runtime has control
over the delivery of system events, it can disable events,
or poll for specific ones. During resource revocation,
Tessellation informs the user-level scheduler, giving it a
chance to adjust accordingly.

Performance isolation between cells guarantees that
other components of the system cannot interfere with a
scheduler’s use of resources. Consequently, applications
can get predictable and repeatable performance within an
a Cell, simplifying performance optimization and real-
time scheduling. Central to Tessellation’s approach are
runtime frameworks, such as Lithe [18], that enable con-
struction of composable, application-specific schedulers.
Via Lithe, Tessellation supports a variety of parallel pro-
gramming models in a uniform and composable way.

3 Resource-Allocation Architecture
Tessellation adopts a layered approach to resource allo-
cation; see Figure 3. The modularity increases overall
flexibility, portability and verifiability. The layers are:

1. Policy Layer: This layer makes resource-allocation
decisions for Cells. It considers system-wide goals,
resource constraints, and performance targets for
Cells. The Policy Layer exploits a variety of poli-
cies for adaptive resource allocation and admis-
sion control. It generates the Space-Time Resource
Graph (STRG), which contains in-memory repre-
sentations of the admitted Cells along with descrip-
tions of their allocated system resources.

2. Mapping and Time-Multiplexing Layer: This layer
distributes the system resources among Cells based
on the STRG. It time-multiplexes Cells at a coarse
granularity – if at all – according to the time param-
eters stored in the STRG.

3. Mechanism Layer: This layer implements spa-
tial partitioning for performance isolation, as de-
scribed earlier. It utilizes whatever hardware isola-
tion mechanisms are natively provided and emulates
missing mechanisms when necessary.

In the following subsections we investigate the Policy
Layer and the Mapping and Time-Multiplexing Layer in
greater detail.
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Figure 3: Resource Allocation in Tessellation: the Policy Layer
encodes resource decisions as a STRG. The graph is realized
by the Mapping/Time-Multiplexing and the Mechanism Layers.

3.1 Policy Layer
The Policy Layer is packaged as a service running within
a dedicated Cell. It distributes resources to Cells by
combining global polices, resource requests, and perfor-
mance requirements. Further, it will refuse to admit new
Cells whose resource requirements are incompatible with
existing resource obligations. In addition to incorporat-
ing global policies, the Policy Layer allows each Cell to
register one or more resource-allocation policies, thereby
injecting application requirements and user preferences
into the decision-making process1.

The Policy Layer generates a Specification Set for
each Cell, organized in a Space-Time Resource Graph
(STRG). The Specification Set of a Cell includes: 1) the
required physical resources, 2) the time-multiplexing
policy and its parameters, and 3) a list of QoS demands
for system services. Specification Sets are generated
based on requests made during the creation of the Cell,
the current behavior of the Cell, and global policies. Fur-
ther, the Policy layer will update Specification Sets to
adapt to changing circumstances.

Admission Control: As a replacement for traditional
fork() or spawn() operations, Tessellation supports
Cell creation and destruction through an interface with
the Policy Layer. Without true admission control it
would be impossible to provide real QoS guarantees.
Consequently, the Policy Layer performs admission con-
trol whenever a Cell is created by confirming that new
resource needs are compatible with existing guarantees.

1We intend to investigate use of a new declarative language for de-
scribing policies.
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Figure 4: High-level view of Admission Control and the Adap-
tive Resource-Allocation Loop in the Policy Layer.

Figure 4 shows the sequence of steps for the initial al-
location of resources during the creation of a Cell (shown
as states C1-C3). When admission of a new Cell is de-
nied, several options are possible. One option is to reflect
back to the application or the users. Another is to adapt
by taking resources from one or more preexisting Cells;
such revocations are acceptable if doing so will not vio-
late the other Cell’s QoS constraints.

Adaptive Resource Allocation: Except in very spe-
cial circumstances, programmers are unlikely to know
exactly how low-level resources affect their performance
goals. This conundrum is a form of “impedance mis-
match” between the units of hardware resources (such as
processors or bandwidth) and the programmer-specified
QoS requirements. As a simple example, the program-
mer may want a given frame rate but have no idea which
resources to request to meet this specification.

One solution to this problem would be to profile ap-
plications in advance and have them make low-level re-
quests to the Policy layer; while plausible, this open-loop
technique is not all that robust in the face of changing
resources. Another option would be to perform on-line
adaptation of resources based on preferred QoS metrics.
It is this later idea that we will explore next.

Figure 4 illustrates the adaptive resource-allocation
loop implemented by the Policy Layer (states L1-L5).
This figure illustrates an important idea, namely that
of the performance report, which is generated by a
Cell-level runtime system for the Policy Layer. A per-
formance report contains performance-counter values
and/or metrics of how current application progress meets
QoS goals. It may consist of both global metrics of
system performance (e.g., power consumed by a Cell),
and Cell-specific performance metrics (e.g., whether
application-specific deadlines are being met).

The Policy Layer adapts resource allocations continu-
ously in an attempt to help Cells achieve their best pos-
sible performance under current conditions. Those de-
cisions result from a process that applies a set of rules

(adaptation policies) to the performance reports.
We are currently interested in two types of adap-

tation policies. The first represents user preferences
as trajectories through predetermined operational points
and follows those trajectories to maximize the user-
perceived performance subject to currently observed
conditions (e.g., [12]). The second consists of model-
based adaptation policies (e.g., [5,8]). These policies rely
on application-specific models that capture performance
trade-offs across a large number of allocations.

3.2 Mapping and Time-Multiplexing
The Mapping and Time-Multiplexing Layer distributes
the system resources among Cells and time-multiplexes
them. Both functions are performed according to the pa-
rameters stored in the STRG. In other words, this layer
makes no policy decisions, but rather implements the
policy decisions given by the Policy Layer.

The Mapping and Time-Multiplexing Layer imple-
ments a bin-packing like operation in order to allocate
physical resources to Cells. It implements a group of ba-
sic time-multiplexing policies:
• Pinned Policy: The Cell is not subject to time-

multiplexing. Cells hosting important services (e.g.,
the network service) and applications with stringent
performance requirements will use this policy.
• Time-triggering policy: The Cell is active during

predetermined time-windows specified by the acti-
vation period (ap) and the length of the time-slice
(tsl). This policy is for real-time Cells.
• Time-fraction policy: The Cell is active for a speci-

fied fraction of the time (e.g. 30%) and with a mini-
mum time-slice. Most general-purpose applications
will use this policy.
• Message-triggered policy: A message-triggered

Cell provides flexible event-handling. It is activated
upon the arrival of messages in designated input
channels and may remain active or may be time-
multiplexed while incoming messages remain.

Most time-multiplexing policies are non-preemptive:
once a Cell is activated it is not suspended until its time-
slice expires. The one exception is that Cells can be given
best-effort resources that may be preempted by Cells
with higher priority (e.g., Message-triggered Cells).

4 Experimental Evaluation
In this section, we examine the potential for performance
isolation in the Tessellation prototype. Currently, Tessel-
lation contains over 22,000 lines of code and runs on both
Intel x86 platforms and RAMP Gold [3], an FPGA-based
simulator that models up to 64 in-order issue 1-GHz
SPARC V8 cores, a shared memory hierarchy, and hard-
ware partitioning mechanisms. The Intel system used in



2 Cores 15 Cores 63 Cores
Intel activate 1.57 µs 8.26 µs N/A

RAMP activate 0.69 µs 1.88 µs 5.37 µs
Intel suspend 1.58 µs 17.59 µs N/A

RAMP suspend 1.19 µs 5.91 µs 34.10 µs

Table 1: Mean activation and suspension latencies for cells of
varying size. Here, core 0 was dedicated to Cell management.

our experiments is a dual socket system equipped two
2.67-GHz Xeon X5550 quad-core processors.

Cell Activation and Suspension: Table 1 summarizes
the overhead of activating and suspending a Cell with
varying cores counts on both RAMP Gold and our Intel
System. This experiment helps validate that STP parti-
tioning in Tessellation works properly and gives insight
into the performance. These numbers are preliminary.
The overhead is small relative to the time scale of Cell
time-multiplexing (i.e., greater than 10ms), but is still
larger than we would like.

Performance Isolation: Our RAMP Gold platform
simulates a mechanism (based on globally synchronized
frames (GSF) [15]) that permits dedication of fractions of
off-chip memory bandwidth to Cells. Using the RAMP
Gold 64-core machine, with private L1s and a shared last
level cache, we create three Cells not subject to time-
multiplexing, with the following resource allocations:
Cell1 is given 32 cores and 50% of memory bandwidth
(i.e., 6.4GB/s); Cell2 16 cores and 25% of memory
bandwidth; Cell3 15 cores and 25% of memory band-
width. Cell1 contains the PARSEC streamcluster and is
our baseline for performance [6]. streamcluster was se-
lected for its significant memory capacity and bandwidth
requirements. Other PARSEC benchmarks are run in the
remaining Cells to potentially interfere with Cell1.

We first activate only Cell1 and run streamcluster
multiple times. We then activate all th Cells and run
the benchmarks concurrently. Finally, we run the bench-
marks again, but disable the memory bandwidth parti-
tioning mechanism, thereby allowing the Cells to com-
pete for resources. Cell1 takes 5.70M, 6.12M and
11.59M core-cycles on average to complete, for the
alone, isolated and un-isolated cases respectively. The
respective standard deviations are 0.30M, 0.95M and
1.17M. These results show that Tessellation provides sig-
nificant performance isolation. The isolation is not per-
fect, but it does reduce the degradation caused by the
other Cells from 103% to 8% in this example, as well
as making the performance more predictable.

Spatial Partitioning: Using the RAMP Gold 64-core
target machine, we evaluate the potential of spatial par-
titioning using Tessellation. We take pairs of PARSEC
applications, placing each application in a Cell. We then
evaluate all possible spatial allocations for the two Cells.
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Figure 5: Performance of spatial partitioning compared with
time-multiplexing. Performance is in cycles (lower is better)
and results are normalized to the best spatial partition.

Cores are assigned in batches of 8, page colors in batches
of 16, and memory bandwidth in batches of 3.4GB/s (a
combinatorial total of 54 valid allocations). We also eval-
uate the time-multiplexing schedule in which one Cell is
assigned the entire machine and run to completion fol-
lowed by the next cell. This final schedule is favorable
for time-multiplexed solution, as there is no overhead
from repeated context switches.

For some pairs, the time-multiplexing solution was
better than any possible spatial-partitioning. However,
for many pairs, the optimal spatial partition is substan-
tially better thanks to disjoint resource requirements, re-
duced interference between pairs, or imperfect applica-
tion scaling. Figure 5 illustrates the performance of sev-
eral pairs. These results show that spatially partitioning
greatly increase scheduler effectiveness. However, naive
spatial divisions are likely to be detrimental to perfor-
mance, even if optimal spatial divisions exist, meaning
that our scheduler must be judicious in its assignment of
resources to Cells.

5 Related Work
Tessellation is influenced by virtual machines, exoker-
nels, and multiprocessor runtime systems [1,2,4,9,13,14,
19]. Other recent manycore operating systems projects,
such as Corey OS [10] and Barrelfish OS [20], share
some structural aspects such as distributed OS services.

Nesbit et al. [17] introduce Virtual Private Machines
(VPM), another framework for resource allocation and
management in multicore systems. The concepts of
VPM and Cell are similar, but the VPM framework does
not include an equivalent communication mechanism to
our inter-cell channel.

6 Conclusion
Space-Time Partitioning (STP) and Two-Level Schedul-
ing are important principles for creating scalable operat-
ing systems that can provide performance guarantees to
applications on manycore architectures. Tessellation is a
new manycore operating system based on those princi-
ples. In this paper, we have discussed Tessellation’s Cell



model, its resource-allocation architecture, and some ba-
sic policies for resource management.

We have a working prototype of Tessellation. Our ex-
perimental results show that, when combined with hard-
ware mechanisms, Tessellation can provide sufficient
performance isolation to applications.
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