

ADVANCING THE STATE OF THE ART IN VIDEO POINT TRACKING THROUGH PARALLELISM

NARAYANAN SUNDARAM, THOMAS BROX, KURT KEUTZER

Parallelism changes the possible

- Highly parallel processors bring new possibilities.
- Through the use of tailored algorithms and careful implementation, we achieve new capabilities in the field of Computer Vision.
- We have successfully transitioned from achieving speedups of existing algorithms to advancing the state of the art through the use of massive parallelism.

Video Point tracking

- Long range motion analysis in video requires us to track points densely over many frames accurately. Optical flow provides the means to achieve this.
- Optical Flow involves computing the motion vectors ("flow field") between the consecutive frames of a video.
- Optical flow computation solves a non-linear optimization (energy minimization) problem.
- We use the *Large Displacement Optical Flow (LDOF)* algorithm, which is crucial for point tracking in real world videos.

LDOF Application Architecture

OPL Patterns Used

- Dense and Sparse Linear Algebra
- Geometric Decomposition
- Data parallelism
- Task parallelism
- SIMD

Results

Point tracker based on LDOF outperforms other trackers

Average Angular Error (Middlebury dataset)

- 46% better than Kanade-Lucas-Tomasi (KLT) tracker and tracks up to 3 orders of magnitude more points*
- 66% more accurate than Sand-Teller tracker while handling large displacements**

** Based on particle trajectories from http://rysn.csail.mit.edu/py/data/py/ (Sand and Teller LICV 2008)