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GPU vs CPU 
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- Promises 5-10x speedup in high performance codes 
- Unless that are hardware constrains that are not in the table 

-  Higher speedups (50x-100x) are common in applications 
-  compare serial program running on CPU vs parallel on GPU 
-  e.g. ignore vector extensions and cores of CPUs 
-  easier to write thread and data parallel programs on GPU  

GeForce 8800GTX Quad Core 2.4GHz ratio 

Cores 16 4 4 

Multiply-add, 
Gflop/s 

346 76.8 4.5 

Gflop/s/core 21.6 19.2 

Pin-bandwidth, 
GB/s 

86.4 8.5 10 



Challenges in programming GPUs 
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Not sufficient technical information on GPUs 
-  how many SIMD lanes register file has? Is memory sequentially
 consistent? How data is partitioned across memory banks? 
-  Reverse engineering may fill some of the spaces 

Hardware is (still) exposed via abstract program model 
-  DirectX in past, CUDA today 
-  Mixes virtual, abstract concepts and physical resources  

Polluted by novel terminology 
-  What is “warp”, “SIMT”, “branch divergence”? 
-  Sounds like very new, scares off low-level programmers 
-  Does not sounds so new, when you figure out how it works 



Challenges in programming GPUs 
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Few people understand how program GPUs for performance 

We get 2x speedups vs. best other work in nearly everything we try 
-  Matrix-matrix multiply (1.6x speedup) 
-  FFT (2x speedup) 
-  LU/Cholesky factorization (3x/2x speedups) 
-  Tridiagonal eigenvalue solver (2x even running on slower GPU) 

Example: partial pivoting in LU factorization 
-  Ad: “GPU supports gather/scatter with arbitrary access patterns” 
-  LAPACK code (sgetrf) spends 50% of time doing pivoting 
-  Gets worse with larger matrices 
-  Only 1% of time is spent in pivoting if matrix is transposed 

-  2x speedup! 



What is GPU architecture 

6 

GPU is an array of vector units 
-  runs vector threads, 32-elements per vector 
-  memory accesses in 16-element, aligned, stride-1 vectors 

-  can do any access pattern, but 10-100x slower 
-  8 lanes for basic arithmetic operations (*, +, bitwise logic, etc) 
-  2 lanes for divide, square root, log, etc 
-  vector registers are largest level of on-chip memory hierarchy 
-  algorithms used on vector computers are often the best 

-  e.g. matrix-matrix multiply, FFT, eigenvalue solver 

Particular features 
-  Multithreading using register windows to hide latencies 
-  Hardware queue for threads that didn’t get window 
-  Skip branch paths not taken by any threads in predication 



8800GTX Memory System 
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(Part of data is according to
 pointer chase benchmark)

8-word cache line 
L1: 8 x 5kB, each is 20-way associative 
L2: 6 x 32kB, each is 4-way associative 
TLB: 16 entries, fully associative, 512kB pages 



What is not GPU Architecture 
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The following features do not belong to GPU architecture 
-  “GPUs run scalar threads” 

-  Scalar thread is an abstraction used in program model 
-  There is one physical program counter per 32 scalar threads 
-  Vector processors can also be viewed as running scalar threads 

-  “millions of threads” 
-  Not required for GPU and can be useful on other processors 
-  It is solution for load balance, scalability and amortization 
-  Common in graphics 
-  98% of arithmetic peak with 2 threads per core 

-  need > 1 per core due to structure of register file 
-  “no global communication” 

-  may be true if memory is not sequentially consistent 
-  (we don’t know if it is) 
-  otherwise can implement global barrier via DRAM 



Matrix-matrix multiply (SGEMM) 

9 

- Uses software prefetching, strip-mining, register blocking 
- Resembles algorithms used for Cray X1 and IBM 3090 VF 
- 60% of peak, bound by access to on-chip shared memory 



FFT, complex-to-complex, batched 
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Results as on GeForce 8800GTX 
Resembles algorithms used for vector processors 
Radix-8 in registers, transposes using shared memory 
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Heterogeneous Computing 
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Q: should you port entire applications to GPU? 
- Assume that you have plenty of time to do that 
- Should get speedup, right? 

Example: Eigenvalue solver (bisection, LAPACK’s sstebz) 
-  Most work (O(n2)) in vectorized, embarrassingly parallel code 

-  do it on GPU and finely tune 
-  run on CPU when doesn’t worth to use GPU 
-  use performance model to choose CPU or GPU version 

-  Little work (O(n)) in nearly serial code 
-  do it on CPU: time-consuming and non-trivial to port 

Independent project: 
- Did everything on the GPU 
- Used advanced parallel algorithms for O(n) work 
- Up to 2x slower running on faster GPU (compared to us) 



Breakdown of Runtime (sstebz) 
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“Count(x)” is the O(n2) work, use either SSE or GPU 
“the rest” is the O(n) work, doesn’t worth to optimize 



Fine-grain operations on GPU 
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CUDA has 5µs startup times 
- Dominates at small problems 

Example: SAXPY 
-  Semantics: y = αx + y where y and x are vectors, α is scalar 
-  SAXPY byte-to-flop ratio: 6 
-  GPU (8800GTX) byte-to-flop ratio: 346/75 ≈ 0.22 
-  Thus, SAXPY is bandwidth bound on GP 
- May run at up to r∞ = 75 GB/s / 6 bytes/flop = 12.5 Gflop/s 
-  Achieves half of that at n½≈ 30,000 
-  Runs at 5-10µs at n = 1…30,000 
- GPU memory fits only up to 14,000x14,000 matrices 
-  Runs at nearly constant time in practice 

May be even slower if not well-optimized 
-  isamax in NVIDIA BLAS 1.1 never takes less than 60µs 
-  faster to copy to CPU and solve there for n < 8,000 



LU Factorization 
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LU factorization: 
-  O(n3) work in bulky BLAS3 operations 
-  O(n2) work in fine-grain BLAS1 / BLAS2 (panel factorization) 

Many found that entire panel factorization is faster on the CPU 
-  We reported it first, see poster @ Winter 2008 ParLab retreat 
-  Didn’t manage to program GPU well? Any other reason? 

Basic analysis: 
- Peak sustained bandwidth of 8800GTX is 75GB/s 
- Kernel launch overhead is 5µs 
-  BLAS1 and BLAS2 are bandwidth bound, so run at 

-  compare vs. CPU handicapped by CPU-GPU transfers 



CPU vs GPU, panel factorization 
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Panel width: 64 (used in practice) 
GPU eventually gets faster than CPU 
But hard to beat CPU at practical cases (in-core, square matrix) 
Instead, we overlap sgemm on GPU w/ panel factorization on CPU 



Overlap in LU factorization 
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Overlap panel factorization on CPU with sgemm on GPU 



Overall Performance 
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Small Triangular Solver 
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Part of LU solver is solving small (e.g 64x64) triangular system with
 many right hand sides 
-  Large grain problem, overhead is not important 
-  many right hand sides, should be enough parallelism 
-  Up to 13 Gflop/s only if using NVIDIA’s BLAS 

- Structure does not fit to GPU constraints? 
- Faster to do on CPU? 
-  Faster to multiply by inverse - 80 Gflop/s on GPU 

-  matrix-matrix multiply has more parallelism, faster on GPU 
-  may get lower numerical accuracy 
-  use safe approach if norm of the inverse is too large 

-  happens in corner cases, not often 



Tridiagonal eigenvector solver 
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(Inverse Iterations) 
Embarrassingly parallel 
-  Runs n independent tridiagonal solves 
-  (More difficult if eigenvalues are clustered) 

LAPACK version (sstein) uses pivoting for better stability 
Not using pivoting is faster and easier to vectorize (but may fail) 

-  run reckless parallel version (e.g. on GPU), no pivoting 
-  expect that it solves most cases, fails in <1% of cases 
-  catch those failures, recompute using safe version 

-  few of them - recompute on CPU 
-  120x faster than LAPACK so far 

-  (LAPACK’s sstein is not parallel) 



Reduction to tridiagonal form 
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LAPACK’s ssytrd 
Used in symmetric eigensolvers 
LAPACK’s version is 50% BLAS3, 50% BLAS1/BLAS2 

- BLAS1/BLAS2 ops are fine-grain = slow on GPU 
- BLAS3 = 60% of arithmetic peak so far, scales well 

Solution: 
-  Reduce to band matrix on GPU (~100% BLAS3) 
-  Reduce further on CPU (asymptotically insignificant work) 
-  Extra overhead if eigenvectors are needed 

-  Two orthogonal transforms instead of one 



Conclusion 
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Trend: CPU-GPU communication improves 
-  Was asymmetric 0.35 / 1.8 GB/s few years ago (X1900XT) 
-  Was symmetric 3.3GB/s until recent (G80) 
-  ~5GB/s today (G90?) 
-  on the same chip in the future? 

-  at least in the same memory system? 

Trend: many realize importance of heterogeneity 
-  Program CPU-GPU system, not simply GPU 
-  Was “port all to GPU, see the speedups” few years ago 
-  Get speedup by porting to CPU today 


