Parallel

Parallel |
< \ 3 \ Applications

Hardware

Parallel
IT industry Software

(Silicon Valley)

Users

S — ‘

Heterogeneous (CPU+GPU) Performance
Libraries

Vasily Volkov

June 6, 2008

Personal
Health | Retrievall Music

Image |Hearing, Spe

Parallel
Browse

Composition & Coordination Language (C&CL)

Design Patterns/Motifs

Efficiency
Languages

C&CL Compiler/interpreter

Parallel

Parallel
Libraries Frameworks

Sketching

Autotuners

Legacy
Code

Schedulers

Communication &
Synch. Primitives

Legacy OS

Efficiency Language Com

ilers

'|OS Libraries & Services| lerarles & Services

pervisor

Multicore/GPGPU RAMP Manycore

Static

Verification

Type
Systems

Directed
Testing

Correctness

Dynamic
Checking

Debugging
with Replay

" S N
GPU vs CPU 4 3

| GeForce 8800GTX | Quad Core 2.4GHz m

Cores

Multiply-add,

Gflop/s 346 76.8 4.5
Gflop/s/core 21.6 19.2

Pin-bandwidth,

GB/s 86.4 8.5 10

-Promises 5-10x speedup in high performance codes
-Unless that are hardware constrains that are not in the table
- Higher speedups (50x-100x) are common in applications
- compare serial program running on CPU vs parallel on GPU
- e.g. ignore vector extensions and cores of CPUs
- easier to write thread and data parallel programs on GPU

" S
Challenges in programming GPUs

Not sufficient technical information on GPUs
- how many SIMD lanes register file has? Is memory sequentially
consistent? How data is partitioned across memory banks?
- Reverse engineering may fill some of the spaces

Hardware is (still) exposed via abstract program model
- DirectX in past, CUDA today
- Mixes virtual, abstract concepts and physical resources

Polluted by novel terminology
- What is “warp”, “SIMT", “branch divergence™?
- Sounds like very new, scares off low-level programmers
- Does not sounds so new, when you figure out how it works

" S
Challenges in programming GPUs

Few people understand how program GPUs for performance

We get 2x speedups vs. best other work in nearly everything we try
- Matrix-matrix multiply (1.6x speedup)
- FFT (2x speedup)
- LU/Cholesky factorization (3x/2x speedups)
- Tridiagonal eigenvalue solver (2x even running on slower GPU)

Example: partial pivoting in LU factorization
- Ad: “GPU supports gather/scatter with arbitrary access patterns”
- LAPACK code (sgetrf) spends 50% of time doing pivoting
- Gets worse with larger matrices
- Only 1% of time is spent in pivoting if matrix is transposed
- 2x speedup!

"
What is GPU architecture

GPU is an array of vector units
- runs vector threads, 32-elements per vector
- memory accesses in 16-element, aligned, stride-1 vectors
- can do any access pattern, but 10-100x slower
- 8 lanes for basic arithmetic operations (*, +, bitwise logic, etc)
- 2 lanes for divide, square root, log, etc
- vector registers are largest level of on-chip memory hierarchy
- algorithms used on vector computers are often the best
- e.g. matrix-matrix multiply, FFT, eigenvalue solver

Particular features
- Multithreading using register windows to hide latencies
- Hardware queue for threads that didn’t get window
- Skip branch paths not taken by any threads in predication

" S
8800GTX Memory System

SIMD core #1

Vector
registers
32KB

SIMD core #2

Vector
registers
32KB

(16 cores)

SIMD core #15

\/=Tei (o]
registers

SIMD core #16

Vector
registers

latency
(cycles)

32KB 32KB

(8 L1 caches)
CROSSBAR

L2 cache
32KB

L2 cache
32KB

(6 L2 caches)

(6 banks)

8-word cache line

L1: 8 x 5kB, each is 20-way associative

L2: 6 x 32kB, each is 4-way associative

TLB: 16 entries, fully associative, 512kB pages

(Part of data is according to
pointer chase benchmark)

" B
What is not GPU Architecture

The following features do not belong to GPU architecture
- “GPUs run scalar threads”
- Scalar thread is an abstraction used in program model
- There is one physical program counter per 32 scalar threads
- Vector processors can also be viewed as running scalar threads
- “millions of threads”
- Not required for GPU and can be useful on other processors
- It is solution for load balance, scalability and amortization
- Common in graphics
- 98% of arithmetic peak with 2 threads per core
- need > 1 per core due to structure of register file
- “no global communication”
- may be true if memory is not sequentially consistent
- (we don’t know if it is)
- otherwise can implement global barrier via DRAM

" S
Matrix-matrix multiply (SGEMM)

210 -+ v
GeForce 8800 GTX
180 —
150 - — A:NxN, B:NxN |
————— A:Nx64, B:64xN
()] T T
9120 ~
O
™
¢® 90

— — —
-, —

64 128 256 512 1024 2048 4096 8192
N

- Uses software prefetching, strip-mining, register blocking
- Resembles algorithms used for Cray X1 and IBM 3090 VF
- 60% of peak, bound by access to on-chip shared memory

FFT, complex-to-complex, batched

250
V
200 &

o]
2
OO’
\
N

100

;
/

e

CUFFT 1.1 S~
0 e

1 8 64 512 4096 32768
N

Results as on GeForce 8800GTX
Resembles algorithms used for vector processors
Radix-8 in registers, transposes using shared memory

benchFFT Gflop/s
z z
(@]
=
g
?,
registerl storage

10

"
Heterogeneous Computing

Q: should you port entire applications to GPU?
- Assume that you have plenty of time to do that
- Should get speedup, right?

Example: Eigenvalue solver (bisection, LAPACK's sstebz)
- Most work (O(n?)) in vectorized, embarrassingly parallel code
- do it on GPU and finely tune
- run on CPU when doesn’t worth to use GPU
- use performance model to choose CPU or GPU version
- Little work (O(n)) in nearly serial code
- do it on CPU: time-consuming and non-trivial to port

Independent project:
- Did everything on the GPU
- Used advanced parallel algorithms for O(n) work
- Up to 2x slower running on faster GPU (compared to us)

11

"
Breakdown of Runtime (sstebz)

100%
90%
80%
70%
60%
50%
40%

30%

the rest

20% Count(x) on CPU
10% B Count(x) on GPU

~ . A \ A .
Q & " o N - e \ % . o Q A o
NN Y@ Y D A D S A 8D

Dimension of Matrix

“Count(x)” is the O(n?) work, use either SSE or GPU
“the rest” is the O(n) work, doesn’t worth to optimize

12

"
Fine-grain operations on GPU

CUDA has 5ps startup times
- Dominates at small problems

Example: SAXPY
- Semantics: y = ax + y where y and x are vectors, a is scalar
- SAXPY byte-to-flop ratio: 6
- GPU (8800GTX) byte-to-flop ratio: 346/75 = 0.22
- Thus, SAXPY is bandwidth bound on GP
-May run atup to r, =75 GB/s / 6 bytes/flop = 12.5 Gflop/s
- Achieves half of that at n.,,= 30,000
- Runs at 5-10us at n =1...30,000
- GPU memory fits only up to 14,000x14,000 matrices
- Runs at nearly constant time in practice
May be even slower if not well-optimized
- isamax in NVIDIA BLAS 1.1 never takes less than 60us
- faster to copy to CPU and solve there for n < 8,000

13

" /N
LU Factorization /R

LU factorization:

- O(n3) work in bulky BLAS3 operations

- O(n?) work in fine-grain BLAS1 / BLAS2 (panel factorization)
Many found that entire panel factorization is faster on the CPU

- We reported it first, see poster @ Winter 2008 ParLab retreat

- Didn’t manage to program GPU well? Any other reason?
Basic analysis:

- Peak sustained bandwidth of 8800GTX is 75GB/s

- Kernel launch overhead is 5us

- BLAS1 and BLASZ2 are bandwidth bound, so run at

bandwidth required
75GB/s

- compare vs. CPU handicapped by CPU-GPU transfers

Time = S5us +

14

"
CPU vs GPU, panel factorization ~ # %

12 6\6@”
7
&1
10 (;d‘)/
QQ ,/,,

g 5
0 //
S 6 66GHZ * rransfel

880061*' .
JR00GTX, naive

-
-
-
I
_————

128 256 512 1024 2048 4096 8192 16384
Height of Panel

Panel width: 64 (used in practice)

GPU eventually gets faster than CPU

But hard to beat CPU at practical cases (in-core, square matrix)
Instead, we overlap sgemm on GPU w/ panel factorization on CPU

15

" S
Overlap in LU factorization

Time

100%
90y, ISy
80%

70%
CPU/GPU

o7 overlap

50%

40% look-ahead

transpose

30%

20%

CPU-GPU transfer
10%

0%

448 704 1088 1664 2496 3648 5312 7744 11264
Order of Matrix

Overlap panel factorization on CPU with sgemm on GPU

16

= B
Overall Performance

210

—_U ‘
180 —— Cholesky .-
---- QR

150 Q\’o /

RN
N
o
%,
N
N\

4)
S &
L Q ,’
o 90 S
L,
&
60 Qof 52 Quad
& 7___-_-Cor-_—:'_’_'_’j___
30 = —_—

o

64 128 256 512 1024 2048 4096 8192 16384
Order of Matrix

17

" S
Small Triangular Solver

Part of LU solver is solving small (e.g 64x64) triangular system with
many right hand sides
- Large grain problem, overhead is not important
- many right hand sides, should be enough parallelism
- Up to 13 Gflop/s only if using NVIDIA's BLAS
- Structure does not fit to GPU constraints?
- Faster to do on CPU?
- Faster to multiply by inverse - 80 Gflop/s on GPU
- matrix-matrix multiply has more parallelism, faster on GPU
- may get lower numerical accuracy
- use safe approach if norm of the inverse is too large
- happens in corner cases, not often

18

" S
Tridiagonal eigenvector solver

(Inverse lterations)

Embarrassingly parallel

- Runs n independent tridiagonal solves

- (More difficult if eigenvalues are clustered)

LAPACK version (sstein) uses pivoting for better stability
Not using pivoting is faster and easier to vectorize (but may fail)
- run reckless parallel version (e.g. on GPU), no pivoting
- expect that it solves most cases, fails in <1% of cases
- catch those failures, recompute using safe version
- few of them - recompute on CPU
- 120x faster than LAPACK so far
- (LAPACK's sstein is not parallel)

19

" S
Reduction to tridiagonal form

LAPACK'’s ssytrd
Used in symmetric eigensolvers
LAPACK’s version is 50% BLAS3, 50% BLAS1/BLAS2
- BLAS1/BLAS2 ops are fine-grain = slow on GPU
- BLAS3 = 60% of arithmetic peak so far, scales well

Solution:
- Reduce to band matrix on GPU (~100% BLAS3)
- Reduce further on CPU (asymptotically insignificant work)
- Extra overhead if eigenvectors are needed
- Two orthogonal transforms instead of one

20

= I /\/\
Conclusion 4\

Trend: CPU-GPU communication improves
- Was asymmetric 0.35/ 1.8 GB/s few years ago (X1900XT)
- Was symmetric 3.3GB/s until recent (G80)
- ~5GB/s today (G907?)
- on the same chip in the future?
- at least in the same memory system?

Trend: many realize importance of heterogeneity

- Program CPU-GPU system, not simply GPU

- Was “port all to GPU, see the speedups” few years ago
- Get speedup by porting to CPU today

21

