Parallel

Parallel j
4 Applications

Hardware
;’ |
| Parallel | o
IT industry Software Users
(Silicon Valley)

YADA

David Gay, Susan Graham, Paul Hilfinger, Brian Kazian, Amir
Kamil, Mayur Naik, Jimmy Su, and Katherine Yelick

June 5, 2008

- o /

Par Lab Research Overview
Easy to write correct programs that run efficiently on manycore

Personal| Image |Hearing, Speech Parallel
Health |Retrieval] Music P Browser
Design Patterns/Motifs

Composition & Coordination Language (C&CL) Static
Verification

C&CL Compiler/Interpreter

Parallel Parallel Type
Libraries Frameworks Systems

Efficiency : Directed

Sketching

Languages Testing

Correctness

Autotuners

ScHedulers Communigation & Dynan_lic
Synch. Primitives Checking

Efficiency Language Compilers

I 0S Libraries & Services Debugging

with Replay

Hypervisor

Multicore/GPGPU RAMP Manycore

. i //”A
Yet Another Data Parallel Language |

0O Main goals

Focus on programmers productivity, not just
efficiency
= Provide reasonable per-core performance but good scalability

Balance performance, productivity, and compiler
complexity

Irregular computation is a primary concern

Target multicore hardware rather than large-scale
parallel machines

.)\
Motivating Applications

0 Heart blood-flow simulation
Developed by Peskin and McQueen at NYU

Applications
= Understanding structural abnormalities
= Evaluating artificial heart valves
= Eventually, artificial hearts

0 Par Lab health code (Tony Keaveny
O Multimedia

Source: www.psc.org

Heart Model

0 Composed of fibers in
a fluid grid
O Includes atria,

ventricles, valves, and
some arteries

O The rest of the
circulatory system is
modeled by

sources: inflow
sinks: outflow

m -/\/\

Heart Simulation Structure v B %

2D Dirac Delta Function

4 phases in each timestep

_ _ 1.Material activation &
Material Points force calculation

4 Interpolate & 2. Spread
Interactlon move materlal Force

3. Navier-Stokes
Fluid Lattice Solver

— /NN
Force Calculation Phase ,
0 Calculates force on each fiber-particle

Force determined by positions of adjacent
particles in the fiber according to Hooke's law

O Fibers independent from each other

0 Forces on different particles can be
computed in parallel
Particle positions not updated, so no races

1.Material activation &
force calculation

Loop-Based Parallelism |

0 Explicitly parallel loops
Fiber fr = ..., £f1 = ...,
forall (x in f.particles.domain) {
f[x] .force = computeForce (fr[x] .pos,
£l ([x] .pos) ;

Deterministic semantics: no races between iterations

m Statically checked; warning and runtime checks when static
verification fails

Iterate on arrays, ranges, trees, graphs, user-defined
types, and parallel iterators

..../é:¥£g¥§~
Parallel Aggregate Operations \

O Implicit aggregate operations
A =B+ C

Equivalent to explicitly parallel loop
forall (x in A.domain)

A[x] = B[x] + C[x];
O ZPL-style shifts and range restriction

operators
Fiber fr

Fiber fl

fA@right;

£Qleft; \\.‘\

fRright

Nested Parallelism

0O Support nested parallelism
forall (£ in allFibers)

forall (x in f.particles.domain)

O Two previous implementation strategies for
nested parallelism

Flatten nesting: has only been applied to functional
languages

Work stealing: has not been proven on data parallel
languages

— /\/\

Force Calculation in YADA 7 T
forall (f in allFibers) {
Fiber fr f@right;
Fiber f1l fRleft;
forall (x in f.particles.domain) {
f[x] .force = computeForce (fr[x] .pos,
£l ([x] .pos) ;

Spread Force Phase \

0 Each particle spreads its force to its
neighboring fluid cells

0 A fluid cell may have multiple neighboring
particles

0 Updates to a fluid cell must be synchronized

2. Spread
Force

2D Example

m -/\/\

Accumulations and Reductions o B

O Programmer specifies accumulate/reduce
operator by qualifying type of reduction target
Asserts indifference to order of application of operator

Research problem: prove order independence of user-
defined functions

0O Example: sum of elements of array A

int accumulate(+) sum = O;
forall (x in A) sum = sum + X;

0 Multiple implementation strategies
Parallel tree reduction
Lock and operate
Transfer to owner and operate

/NN

Spread Force in YADA 7T

double accumulate(+) [] force =
new double[low:high];

forall (p in allParticles) {
Point pos = [p.x, P.Y, P-2Z];
force[pos+north] += p.force;
force[posteast] += p.force;
force[pos+south] += p.force;
force[post+west] += p.force;

) _ N\/\
Navier-Stokes Phase A T

0 Incompressible fluid needs an elliptic solver
High communication demand
Information propagates across domain

0 Uses FFT-based solver
Calls FFTW library to perform actual FFTs

0 Need ability to call libraries written in
other languages

yF— I”’
. III / 3. Navier-Stokes
1D FFTs > Solver

Open Issues

0 Base language

Previous data-parallel languages
Fortress/X10/Chapel
C family/Java/other sequential languages

O Precise feature set
Nested parallelism
ZPL-style shift operators

: NN\
Moving Forward T TS

O Implementation strategy
Initial prototype by Fall 2008 (serial? subset?)
Attempt to use existing serial and parallel libraries

O Performance goals
Good performance on simple data parallel code
Scalable performance on nested parallel code and
other new features

O Early evaluation
Port heart code
Determine suitability for multimedia applications

