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Yet Another Data Parallel Language

 Main goals
 Focus on programmers productivity, not just

efficiency
 Provide reasonable per-core performance but good scalability

 Balance performance, productivity, and compiler
complexity

 Irregular computation is a primary concern
 Target multicore hardware rather than large-scale

parallel machines



Motivating Applications

 Heart blood-flow simulation
 Developed by Peskin and McQueen at NYU
 Applications

 Understanding structural abnormalities
 Evaluating artificial heart valves
 Eventually, artificial hearts

 Par Lab health code (Tony Keaveny)
 Multimedia

Source: www.psc.org



Heart Model

 Composed of fibers in
a fluid grid

 Includes atria,
ventricles, valves, and
some arteries

 The rest of the
circulatory system is
modeled by
 sources: inflow
 sinks: outflow



Heart Simulation Structure
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Force Calculation Phase

 Calculates force on each fiber-particle
 Force determined by positions of adjacent

particles in the fiber according to Hooke’s law

 Fibers independent from each other
 Forces on different particles can be

computed in parallel
 Particle positions not updated, so no races
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Loop-Based Parallelism
 Explicitly parallel loops
  Fiber fr = ..., fl = ...;
  forall (x in f.particles.domain) {
    f[x].force = computeForce(fr[x].pos,
                              fl[x].pos);
  }

 Deterministic semantics: no races between iterations
 Statically checked; warning and runtime checks when static

verification fails

 Iterate on arrays, ranges, trees, graphs, user-defined
types, and parallel iterators



Parallel Aggregate Operations

 Implicit aggregate operations
A = B + C

 Equivalent to explicitly parallel loop
forall (x in A.domain)
  A[x] = B[x] + C[x];

 ZPL-style shifts and range restriction
operators

  Fiber fr = f@right;
  Fiber fl = f@left;

f@right

f@left



Nested Parallelism

 Support nested parallelism
forall (f in allFibers)
  ...
  forall (x in f.particles.domain)
    ...

 Two previous implementation strategies for
nested parallelism
 Flatten nesting: has only been applied to functional

languages
 Work stealing: has not been proven on data parallel

languages



Force Calculation in YADA
forall (f in allFibers) {
  Fiber fr = f@right;
  Fiber fl = f@left;
  forall (x in f.particles.domain) {
    f[x].force = computeForce(fr[x].pos,
                              fl[x].pos);
  }
}



Spread Force Phase
 Each particle spreads its force to its

neighboring fluid cells
 A fluid cell may have multiple neighboring

particles
 Updates to a fluid cell must be synchronized

2D Example
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Accumulations and Reductions
 Programmer specifies accumulate/reduce

operator by qualifying type of reduction target
 Asserts indifference to order of application of operator
 Research problem: prove order independence of user-

defined functions

 Example: sum of elements of array A
int accumulate(+) sum = 0;
forall (x in A) sum = sum + x;

 Multiple implementation strategies
 Parallel tree reduction
 Lock and operate
 Transfer to owner and operate



Spread Force in YADA
double accumulate(+) [] force =

new double[low:high];
forall (p in allParticles) {
  Point pos = [p.x, p.y, p.z];
  force[pos+north] += p.force;
  force[pos+east] += p.force;
  force[pos+south] += p.force;
  force[pos+west] += p.force;
}



Navier-Stokes Phase
 Incompressible fluid needs an elliptic solver

 High communication demand
 Information propagates across domain

 Uses FFT-based solver
 Calls FFTW library to perform actual FFTs

 Need ability to call libraries written in
other languages

1D FFTs
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Open Issues

 Base language
 Previous data-parallel languages
 Fortress/X10/Chapel
 C family/Java/other sequential languages

 Precise feature set
 Nested parallelism
 ZPL-style shift operators



Moving Forward

 Implementation strategy
 Initial prototype by Fall 2008 (serial? subset?)
 Attempt to use existing serial and parallel libraries

 Performance goals
 Good performance on simple data parallel code
 Scalable performance on nested parallel code and

other new features

 Early evaluation
 Port heart code
 Determine suitability for multimedia applications


