
Parallel
Applications

Parallel
Hardware

Parallel
SoftwareIT industry

(Silicon Valley)
Users

YADA

David Gay, Susan Graham, Paul Hilfinger, Brian Kazian, Amir
Kamil, Mayur Naik, Jimmy Su, and Katherine Yelick

June 5, 2008

Personal
Health

Image
Retrieval

Hearing,
Music Speech Parallel

Browser
Design Patterns/Motifs

Sketching

Legacy
Code Schedulers Communication &

Synch. Primitives
Efficiency Language Compilers

Easy to write correct programs that run efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

HypervisorOS

Arch.

Productivity

Layer

Efficiency

Layer C
or

re
ct

ne
ss

Applications

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with Replay

Directed
Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency
Languages

Type
Systems

D
ia

gn
os

in
g

P
ow

er
/P

er
fo

rm
an

ce

Par Lab Research Overview

Yet Another Data Parallel Language

 Main goals
 Focus on programmers productivity, not just

efficiency
 Provide reasonable per-core performance but good scalability

 Balance performance, productivity, and compiler
complexity

 Irregular computation is a primary concern
 Target multicore hardware rather than large-scale

parallel machines

Motivating Applications

 Heart blood-flow simulation
 Developed by Peskin and McQueen at NYU
 Applications

 Understanding structural abnormalities
 Evaluating artificial heart valves
 Eventually, artificial hearts

 Par Lab health code (Tony Keaveny)
 Multimedia

Source: www.psc.org

Heart Model

 Composed of fibers in
a fluid grid

 Includes atria,
ventricles, valves, and
some arteries

 The rest of the
circulatory system is
modeled by
 sources: inflow
 sinks: outflow

Heart Simulation Structure

4. Interpolate &
move material

3. Navier-Stokes
 Solver

2. Spread
Force

4 phases in each timestep

Material Points

Interaction

Fluid Lattice

2D Dirac Delta Function

1.Material activation &
force calculation

Force Calculation Phase

 Calculates force on each fiber-particle
 Force determined by positions of adjacent

particles in the fiber according to Hooke’s law

 Fibers independent from each other
 Forces on different particles can be

computed in parallel
 Particle positions not updated, so no races

4. Interpolate &
move material

3. Navier-Stokes
 Solver

2. Spread
Force

1.Material activation &
force calculation

Loop-Based Parallelism
 Explicitly parallel loops
 Fiber fr = ..., fl = ...;
 forall (x in f.particles.domain) {
 f[x].force = computeForce(fr[x].pos,
 fl[x].pos);
 }

 Deterministic semantics: no races between iterations
 Statically checked; warning and runtime checks when static

verification fails

 Iterate on arrays, ranges, trees, graphs, user-defined
types, and parallel iterators

Parallel Aggregate Operations

 Implicit aggregate operations
A = B + C

 Equivalent to explicitly parallel loop
forall (x in A.domain)
 A[x] = B[x] + C[x];

 ZPL-style shifts and range restriction
operators

 Fiber fr = f@right;
 Fiber fl = f@left;

f@right

f@left

Nested Parallelism

 Support nested parallelism
forall (f in allFibers)
 ...
 forall (x in f.particles.domain)
 ...

 Two previous implementation strategies for
nested parallelism
 Flatten nesting: has only been applied to functional

languages
 Work stealing: has not been proven on data parallel

languages

Force Calculation in YADA
forall (f in allFibers) {
 Fiber fr = f@right;
 Fiber fl = f@left;
 forall (x in f.particles.domain) {
 f[x].force = computeForce(fr[x].pos,
 fl[x].pos);
 }
}

Spread Force Phase
 Each particle spreads its force to its

neighboring fluid cells
 A fluid cell may have multiple neighboring

particles
 Updates to a fluid cell must be synchronized

2D Example

4. Interpolate &
move material

3. Navier-Stokes
 Solver

2. Spread
Force

1.Material activation &
force calculation

Accumulations and Reductions
 Programmer specifies accumulate/reduce

operator by qualifying type of reduction target
 Asserts indifference to order of application of operator
 Research problem: prove order independence of user-

defined functions

 Example: sum of elements of array A
int accumulate(+) sum = 0;
forall (x in A) sum = sum + x;

 Multiple implementation strategies
 Parallel tree reduction
 Lock and operate
 Transfer to owner and operate

Spread Force in YADA
double accumulate(+) [] force =

new double[low:high];
forall (p in allParticles) {
 Point pos = [p.x, p.y, p.z];
 force[pos+north] += p.force;
 force[pos+east] += p.force;
 force[pos+south] += p.force;
 force[pos+west] += p.force;
}

Navier-Stokes Phase
 Incompressible fluid needs an elliptic solver

 High communication demand
 Information propagates across domain

 Uses FFT-based solver
 Calls FFTW library to perform actual FFTs

 Need ability to call libraries written in
other languages

1D FFTs

4. Interpolate &
move material

3. Navier-Stokes
 Solver

2. Spread
Force

1.Material activation &
force calculation

Open Issues

 Base language
 Previous data-parallel languages
 Fortress/X10/Chapel
 C family/Java/other sequential languages

 Precise feature set
 Nested parallelism
 ZPL-style shift operators

Moving Forward

 Implementation strategy
 Initial prototype by Fall 2008 (serial? subset?)
 Attempt to use existing serial and parallel libraries

 Performance goals
 Good performance on simple data parallel code
 Scalable performance on nested parallel code and

other new features

 Early evaluation
 Port heart code
 Determine suitability for multimedia applications

