
Parallel
Applications

Parallel
Hardware

Parallel
SoftwareIT industry

(Silicon Valley)
Users

YADA

David Gay, Susan Graham, Paul Hilfinger, Brian Kazian, Amir
Kamil, Mayur Naik, Jimmy Su, and Katherine Yelick

June 5, 2008

Personal
Health

Image
Retrieval

Hearing,
Music Speech Parallel

Browser
Design Patterns/Motifs

Sketching

Legacy
Code Schedulers Communication &

Synch. Primitives
Efficiency Language Compilers

Easy to write correct programs that run efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

HypervisorOS

Arch.

Productivity

Layer

Efficiency

Layer C
or

re
ct

ne
ss

Applications

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with Replay

Directed
Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency
Languages

Type
Systems

D
ia

gn
os

in
g

P
ow

er
/P

er
fo

rm
an

ce

Par Lab Research Overview

Yet Another Data Parallel Language

 Main goals
 Focus on programmers productivity, not just

efficiency
 Provide reasonable per-core performance but good scalability

 Balance performance, productivity, and compiler
complexity

 Irregular computation is a primary concern
 Target multicore hardware rather than large-scale

parallel machines

Motivating Applications

 Heart blood-flow simulation
 Developed by Peskin and McQueen at NYU
 Applications

 Understanding structural abnormalities
 Evaluating artificial heart valves
 Eventually, artificial hearts

 Par Lab health code (Tony Keaveny)
 Multimedia

Source: www.psc.org

Heart Model

 Composed of fibers in
a fluid grid

 Includes atria,
ventricles, valves, and
some arteries

 The rest of the
circulatory system is
modeled by
 sources: inflow
 sinks: outflow

Heart Simulation Structure

4. Interpolate &
move material

3. Navier-Stokes
 Solver

2. Spread
Force

4 phases in each timestep

Material Points

Interaction

Fluid Lattice

2D Dirac Delta Function

1.Material activation &
force calculation

Force Calculation Phase

 Calculates force on each fiber-particle
 Force determined by positions of adjacent

particles in the fiber according to Hooke’s law

 Fibers independent from each other
 Forces on different particles can be

computed in parallel
 Particle positions not updated, so no races

4. Interpolate &
move material

3. Navier-Stokes
 Solver

2. Spread
Force

1.Material activation &
force calculation

Loop-Based Parallelism
 Explicitly parallel loops
 Fiber fr = ..., fl = ...;
 forall (x in f.particles.domain) {
 f[x].force = computeForce(fr[x].pos,
 fl[x].pos);
 }

 Deterministic semantics: no races between iterations
 Statically checked; warning and runtime checks when static

verification fails

 Iterate on arrays, ranges, trees, graphs, user-defined
types, and parallel iterators

Parallel Aggregate Operations

 Implicit aggregate operations
A = B + C

 Equivalent to explicitly parallel loop
forall (x in A.domain)
 A[x] = B[x] + C[x];

 ZPL-style shifts and range restriction
operators

 Fiber fr = f@right;
 Fiber fl = f@left;

f@right

f@left

Nested Parallelism

 Support nested parallelism
forall (f in allFibers)
 ...
 forall (x in f.particles.domain)
 ...

 Two previous implementation strategies for
nested parallelism
 Flatten nesting: has only been applied to functional

languages
 Work stealing: has not been proven on data parallel

languages

Force Calculation in YADA
forall (f in allFibers) {
 Fiber fr = f@right;
 Fiber fl = f@left;
 forall (x in f.particles.domain) {
 f[x].force = computeForce(fr[x].pos,
 fl[x].pos);
 }
}

Spread Force Phase
 Each particle spreads its force to its

neighboring fluid cells
 A fluid cell may have multiple neighboring

particles
 Updates to a fluid cell must be synchronized

2D Example

4. Interpolate &
move material

3. Navier-Stokes
 Solver

2. Spread
Force

1.Material activation &
force calculation

Accumulations and Reductions
 Programmer specifies accumulate/reduce

operator by qualifying type of reduction target
 Asserts indifference to order of application of operator
 Research problem: prove order independence of user-

defined functions

 Example: sum of elements of array A
int accumulate(+) sum = 0;
forall (x in A) sum = sum + x;

 Multiple implementation strategies
 Parallel tree reduction
 Lock and operate
 Transfer to owner and operate

Spread Force in YADA
double accumulate(+) [] force =

new double[low:high];
forall (p in allParticles) {
 Point pos = [p.x, p.y, p.z];
 force[pos+north] += p.force;
 force[pos+east] += p.force;
 force[pos+south] += p.force;
 force[pos+west] += p.force;
}

Navier-Stokes Phase
 Incompressible fluid needs an elliptic solver

 High communication demand
 Information propagates across domain

 Uses FFT-based solver
 Calls FFTW library to perform actual FFTs

 Need ability to call libraries written in
other languages

1D FFTs

4. Interpolate &
move material

3. Navier-Stokes
 Solver

2. Spread
Force

1.Material activation &
force calculation

Open Issues

 Base language
 Previous data-parallel languages
 Fortress/X10/Chapel
 C family/Java/other sequential languages

 Precise feature set
 Nested parallelism
 ZPL-style shift operators

Moving Forward

 Implementation strategy
 Initial prototype by Fall 2008 (serial? subset?)
 Attempt to use existing serial and parallel libraries

 Performance goals
 Good performance on simple data parallel code
 Scalable performance on nested parallel code and

other new features

 Early evaluation
 Port heart code
 Determine suitability for multimedia applications

