

Using FPGAs to Simulate Novel Datacenter Network Architectures at Scale Zhangxi Tan, Krste Asanovic, David Patterson

Datacenter Network Infrastructure

- ☐ Network infrastructure is the "SUV of datacenter"
 - Large Cisco switches/routers are expensive and unreliable
 - Important for many optimizations
 - Improving server utilization (power consumption)
 - Supporting data intensive map-reduce jobs
- ☐ Many network architectures proposed recently
 - VL2, Portland, Dcell, Thacker's container switch
- ☐ Different observations lead to many distinct design features
 - Switch designs
 - Network designs
 - Application and protocols

Problems of Existing Evaluations

- ☐Scale is way smaller than real datacenter network
 - << 100 nodes vs. O(10,000) nodes
- ☐ Synthetic programs and benchmarks
- Datacenter Programs: Web search, email, map/reduce
- □Off-the-shelf switches architectural details are NDA
- •Limited architectural design space configurations: E.g. change link delays, buffer size and etc.

Our Approach

- Build a "wind tunnel" for datacenter network using FPGAs
 - □ Simulate O(10,000) nodes: each is capable of running real software
 - □ Simulate O(1,000) datacenter switches (all levels) with detail and accurate timing
 - Runtime configurable architectural parameters (link speed/latency, host speed)
 - Build on top of RAMP Gold: A full-system FPGA simulator for manycore systems
 - □ Prototyping with a rack of BEE3 boards

Node Software

- LAMP + map/reduce
- Web 2.0 benchmarks
- Some research code and production code
 - E.g. Twitter memcached

Implementation

- Single FPGA Implementation (current)
 - □ \$750 Xilinx XUP V5 board
 - 64 cores (single pipeline), 2GB DDR2, FP, processor timing model, ~1M target cycles/second, 260x faster than SW
 - Boot Linux 2.6.21 and Research OS

- Multi-FPGA Implementation for datacenter simulation (pending)
 - □ BEE3: 4 Xilinx Virtex 5 LX155T
 - □ ~512K cores +, 64GB DDR2, FP, timing model

Simulator Architecture

- Modularized single-FPGA designs: two types of FPGAs
- Connecting multiple FPGAs using multi-gigabit transceivers according to physical topology

Case Study: Reproduce the TCP Incast Problem

A TCP throughput collapse that occurs as the number of servers sending data to a client increases past the ability of an Ethernet switch to buffer packets.

Simulation vs. Measurement

Importance of Node Software

Simulator Scaling

- On 2007 FPGAs (Xilinx Virtex 5 LX155T)
 - □ 2 RAMP Gold pipelines, 128 servers on one FPGA, 512 on one BEE3 board;
 - □ 256 MB memory per simulated server
 - □ 88 FPGAs with 22 BEE3 boards for a 10,000 system
- On 2011 FPGAs (Xilinx Virtex 7)
 - □ 16 RAMP Gold pipelines, 1024 servers on one FPGA
 - □ 128 MB memory per simulated server
 - □ 11~12 single-FPGA boards for a 10,000 system
 - ☐ Simulator cost: ~\$120K
 - Board cost: \$5,000 * 12 = \$60,000
 - DRAM cost: \$600 * 8 * 12 = \$57,000
 - \square O(10,000) real datacenter cost:
 - \$36M in CAPEX, \$800K in OPEX/mo.

FPGA vs. Parallel Software Simulator

- ☐ Multi-core never better than 2x single-core
- □ Top two software simulation overheads
 - ☐ flit-by-flit synchronizations
 - network microarchitecture details

Conclusion & Contribution

- Simulate node hardware with software at the scale of O(10,000)
- Node software significantly affects the simulation result
- RAMP Gold is promising for container-level experiments
- Production release: Q4, 2011