
Source Snooping Cache
Coherence Protocols

James Goodman
Computer Science Dept.
University of Auckland

Source Snooping Cache Coherence Protocols

The gap between point-to-point network speeds and buses has grown
dramatically in the last few years, leaving the dominant, bus-based snoopy cache
coherence methods disadvantaged. Directory-based schemes use point-to-point
networks and scale to large numbers of processors, but generally require at least
three hops for most cache misses, making them slow for small- or medium-sized
systems. Point-to-point networks can be used to broadcast, but the global
ordering and synchronization provided by a bus are missing. Intel recently
introduced a new cache coherence protocol as part of the QuickPath Interface
(QPI), replacing the Front Side Bus (FSB). QPI includes the first example of a
"source snooping" protocol to be introduced into a commercial product.

We will discuss source snooping protocols, showing how they can combine both
the scalability of directories with the two-hop access delay of snooping caches. We
will describe some of the challenges and trade-offs by means of two examples: QPI
and MESIF, an ancestral protocol developed in 2001.

6Nov09 Source Snooping 2

intel Confidential

Disclaimer: I Don’t Speak for Intel…

6Nov09 3 Source Snooping

Acknowledgement

This talk focuses on joint work with
Herbert Hum at Intel in 2001.

6Nov09 4 Source Snooping

QPI Reference

R.A. Maddox, G. Singh and R.J. Safranek,
Weaving High Performance Multiprocessor
Fabric—Architectural insights into the Intel
QuickPath Interconnect,” Intel Press, 2009.

6Nov09 5 Source Snooping

QPI

The Quick Path Interconnect (QPI) was recently
introduced by Intel to replace the Front Side Bus
•  Link Layer: QPI Link Pairs

– “Pre-emphasis clocking”
–  Intel: “Transmitter Equalization”

6Nov09 Source Snooping 6

6Nov09 Source Snooping 7

6Nov09 Source Snooping 8

Our 2001 Goals

Develop a point-to-point cache coherency protocol that:
–  Is efficient for a small number of nodes
–  Has benefits of a bus protocol in terms of hops
–  Does not require Backoff/Retry
–  Maximizes throughput by handling concurrent requests

efficiently
–  Is not dependent on the switching fabric (i.e., no ordering

required)
–  Can scale in a hierarchical fashion

•  Does not rely on a directory scheme
•  Is directory-compatible in large systems

–  Supports all memory models, including sequential
consistency

6Nov09 9 Source Snooping

•  Directories for large Systems (?)
•  Home-Snoop Option
– Appears similar to Archibald/Baer’s “2-bit

solution” (1984)

•  Source-Snoop Option

QPI Protocol Layer

6Nov09 10 Source Snooping

Characteristics
–  Is efficient for a small number of nodes
–  Has benefits of a bus protocol in terms of hops
–  Does not require Backoff/Retry
–  Maximizes throughput by handling concurrent requests

efficiently
–  Is dependent on the switching fabric (i.e., no ordering

required)
–  Can scale in a hierarchical fashion

•  Does not rely on a directory scheme
•  Is directory-compatible in large systems

QPI Source Snoop Protocol

6Nov09 11 Source Snooping

Develop a point-to-point cache coherency protocol that:
–  Is efficient for a small number of nodes
–  Has benefits of a bus protocol in terms of hops
–  Does not require Backoff/Retry
–  Maximizes throughput by handling concurrent requests

efficiently
–  Not dependent on the switching fabric (i.e., no ordering

required)
–  Can scale in a hierarchical fashion

•  Does not rely on a directory scheme
•  Is directory-compatible in large systems

–  Supports all memory models, including sequential
consistency

Our 2001 Goals

6Nov09 12 Source Snooping

Characteristics
–  Is efficient for a small number of nodes
–  Has benefits of a bus protocol in terms of hops
–  Does not require Backoff/Retry
–  Maximizes throughput by handling concurrent requests

efficiently
–  (Not) Dependent on the switching fabric (i.e., no ordering

required)
–  Can scale in a hierarchical fashion

•  Does not rely on a directory scheme
•  Is directory-compatible in large systems

–  Supports all memory models, including sequential
consistency (???)

QPI Source Snoop Protocol

6Nov09 13 Source Snooping

Cache Memory—A Review

•  Coherence States (MESI)
•  Directories
•  Snooping

6Nov09 14 Source Snooping

Coherence States
•  MESI

–  Invalid
•  Not present or stale

–  Shared
•  Readable
•  May be other cached copies

–  Modified
•  Writable
•  Only valid copy
•  Main Memory is stale

–  Exclusive
•  Writable
•  Memory is consistent

•  Extensions
–  MOESI also includes Owned
–  MESIF: Forward (optimization)

6Nov09 15 Source Snooping

Directories [1976]

+ Scalable
+ “The Future” since the 1970s

- Multihop
- Require 3+ sequential hops for most common

operations

- Optimized for large systems
- Slow even for small systems

- No large-scale commercial success

6Nov09 16 Source Snooping

Snoopy Caches [1982]

+ Quicker access to shared data
+ Exploit broadcast capability
+ Bus defines order
– Many limits on scalability

6Nov09 17 Source Snooping

Observed Trends

•  Buses are out of gas - nasty transmission line
•  Point-to-point, one-directional wires can be

very fast
•  Systems are hierarchical
•  Small number of nodes is often a sweet spot
•  Caches can provide data faster than main

memory
–  Sharing is increasingly important in cache misses

6Nov09 18 Source Snooping

Point-to-Point Links

•  Good properties
– Fast
– Robust
– Can be indirect

•  Observation: point-to-point links can be
used to “broadcast”
– Need complete interconnect?

•  May not scale, but works for small numbers

6Nov09 19 Source Snooping

Idea: Replace a bus with point-
to-point links and snoop

Good idea, but buses support (and
snooping protocols exploit)
–  Intervention
–  Conflicts
–  Ordering

6Nov09 20 Source Snooping

State of the Art, 2001
Focus on ordering requests entering network:

–  P.F. Reynolds, Jr., C. Williams, and R.R. Wagner, Jr., “Isotach networks,” IEEE Transactions
on Parallel and Distributed Systems, vol. 8, no. 4, pp. 337-348, April 1997.

–  J. Regehr, “An isotach implementation for Myrinet,” Technical Report CS-97-12, Dept. of
Computer Science, University of Virginia, May 1997.

–  A.E. Condon, et al., “Using Lamport clocks to reason about relaxed memory models,” in
Proceedings of the 5th International Symposium on High Performance Computer Architecture,
Orlando, Florida, January 1999.

–  E.E. Bilir, R.M. Dickson, Y. Hu, M. Plakal, D.J. Sorin, M.D. Hill, and D.A. Wood,
“Multicast snooping: a new coherence method using a multicast address network,” in
Proceedings of the 26th International Symposium on Computer Architecture, Atlanta, Georgia,
May 1999.

–  M.K.M. Martin, D.J. Sorin, A. Ailamaki, A.R. Alameldeen, R.M. Dickson, C.J. Mauer, K.E.
Moore, M. Plakal, M.D. Hill, D.A. Wood, “Timestamp Snooping: An Approach for
Extending SMPs,” in Proceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX), Cambridge,
Massachusetts, November 13-15, 2000.

6Nov09 21 Source Snooping

State of the Art, 2009

Focus on ordering requests entering network:
–  N. Agarwal, L-S. Peh and N.K. Jha, “In-Network Snoop Ordering

(INSO): Snoopy Coherence on Unordered Interconnects,” 15th
International Conference on High-Performance Computer Architecture
(HPCA-15), February 2009, Raleigh, North Carolina, USA 2009

“There are many different interpretations of snoopy protocols. We use snoopy
to imply a broadcast protocol in which requests are sent directly to other
nodes in the system, without having to go to an ordering point. Other

nodes in the system “snoop” to determine whether the request is meant for
them and act accordingly.“

“We propose In-Network Snoop Ordering (INSO), in which coherence
requests from a snoop-based protocol are inserted into the interconnect

fabric and the network orders the requests in a distributed manner, creating
a global ordering among requests.”

6Nov09 22 Source Snooping

Insight

The network does not need to provide ordering
•  The network must inform a node when it is

safe to expose modifications
•  Global ordering can be achieved if each

processor orders its own memory operations,
assuring changes in values are observable only
after the instruction has committed.

•  Nodes can collectively detect conflicts and
prevent instructions from committing until
they are resolved.

6Nov09 23 Source Snooping

6Nov09 Source Snooping 24

6Nov09 Source Snooping 25

6Nov09 Source Snooping 26

Our System Model
•  A node may include

–  A processor, which generates memory requests
–  A cache, which may contain redundant copies (or the only copy) of

parts of the address space
–  Main memory for some part of the address space

•  A point-to-point communication network
–  Provides pair-wise communication paths that connect all nodes,

possibly indirectly
–  Reliably delivers messages
–  Is unordered

•  Each address resides at a “Home” node, and may be cached in
some or all nodes

•  A node may consist of multiple nodes connected by a
communication network and behaving as if it were a single node

6Nov09 27 Source Snooping

MESIF (mas’iv) Protocol

Message Sequence Diagrams

ABC Caching Agents
H Home node (possibly including cache)
MC Memory Controller

 Request
 Response without data
 Response with data
 Conflict response
 Acknowledgement of Response
 Forwarding command
 Completion

6Nov09 29 Source Snooping

Read Uncached Line (Directory)

6Nov09 31

A B C H MC
I I I

I➙S

Directory lookup

Source Snooping

Read Uncached Line (MESI)

6Nov09 33

A B C H MC
I I I

I➙E

Source Snooping

Read Shared (Directory)

6Nov09 35

A B C H MC
I S S

I➙S

Source Snooping

Directory lookup

S F
A B C H MC

I S

I➙F
F➙S

Read Shared (MESI)F (MESIF)

6Nov09 37 Source Snooping

Read for Ownership (Directory)

6Nov09 39

A B C H MC
I I M

M➙I

I➙M

Directory lookup

Source Snooping

Read for Ownership (MESIF)

6Nov09 41

A B C H MC
I I M

M➙I
I➙M

Source Snooping

F
A B C H MC

S S

S➙E

6Nov09 43

Upgrade/Invalidate (Directory)

S➙I

Source Snooping

F➙I

Directory lookup

F
A B C H MC

S S

I➙E

F➙I

6Nov09 45

Upgrade/Invalidate (MESIF)

S➙I

Source Snooping

What about conflicts?

Read for Ownership (Conflict)

6Nov09 48

A H MC
I

I➙M

I➙E

B C
M I

Source Snooping

M➙I

Conflicts

Conflicts between X and Y will always be
detected if X sends cache request to Y and Y
sends cache request to X
– Both may detect
– At least one will detect

6Nov09 49 Source Snooping

Read for Ownership (Conflict)

6Nov09 50

A H MC
I

I➙M

I➙E

B C
M I

Source Snooping

A must await
response from C,

then ack B

C would detect
conflict with A

here

M➙I

M➙?

?➙I

Read for Ownership (Conflict)

6Nov09 51

A H MC
I

I➙M

I➙M

B C
M I

Source Snooping

Conflict(C)

M➙?
DACK Wait

Resolving Conflicts

•  For more complex conflicts, a single point is
required to sort out conflicts

•  Home:
– Does not determine the winner (FCFS)
– Arranges for losers to be included

6Nov09 52 Source Snooping

Global Ordering Point

•  The Global Ordering (G.O.) point for a write
instruction is the time when the system can
guarantee no previous value can be
observed; the instruction may now make
visible a new value.

•  A write instruction may finish executing an
instruction and retire it, but cannot commit it
until the G.O. point.

6Nov09 53 Source Snooping

Making MESIF Safe
•  In the MESIF protocol using HOME as the conflict resolution

point requires
–  Home included with other nodes

•  Home does not respond
–  Cache-to-cache responses must report conflicts, if any
–  A second message to Home confirming or cancelling the original

request
•  Message must indicate any conflicts observed

–  Memory must resolve conflicts and delay confirmation until
resolved

–  Responses from memory to both requesters confirming the order
•  Winning processor is instructed to forward data to loser
•  Losing processor receives acknowledgement but no data
•  Losing processor receives data from winner
•  Multiple losers are queued

–  Processors may use data when it arrives, but may not make it
visible until Home confirms.

6Nov09 55 Source Snooping

Read Uncached Line (MESIF)

6Nov09 56

A B C H MC
I I I

I➙E
Source Snooping

S F

Read Shared (MESIF)

6Nov09 57

A B C H MC
I S

I➙F

F➙S

Source Snooping

Read for Ownership (MESIF)

6Nov09 58

A B C H MC
I I M

M➙I

I➙M

Source Snooping

QPI Protocol

•  Responses are sent to Home to collect rather
than to requester
– Data is sent directly to requester

•  Home sends acknowledgement to requester
– Data is included if not already delivered

•  Home must be told of conflicts
–  Issues forwarding/wait directives

6Nov09 Source Snooping 60

Read Uncached Line (QPI)

6Nov09 61

A B C H MC
I I I

I➙E
Source Snooping

Read Shared (QPI?)

6Nov09 62

S F
A B C H MC

I S

I➙F

F➙S

Source Snooping

Read for Ownership (QPI)

6Nov09 63

A B C H MC
I I M

I➙M

M➙I

Source Snooping

Comparison of QPI & MESIF

•  QPI specification is not public
•  Comparison is not straightforward

6Nov09 64 Source Snooping

QPI & MESIF

•  QPI requires ordered messages to/from
Home

•  MESIF and QPI provide cache-to-cache
data in same time

•  In simple (common) cases, QPI requires:
– one fewer message
– shorter path to G.O. point

•  MESIF requires fewer messages, has shorter
path length in conflicts

6Nov09 Source Snooping 65

Read for Ownership (MESIF)

6Nov09 68

A H MC
I

B
I

I➙E
E➙M
M➙I

(B)

I➙M

Wait

5

4

3

2
1

MR

Data

Maximum message path: 5
Source Snooping

Total messages: 11

Read for Ownership (QPI)

6Nov09 69

A B H MC
I I

I➙E

I➙M
M➙I

RdInvOwn

RdInvOwn RspCnflt

SnpInvOwn

RspConflt
DataE,FrcAckCnflt

AckCnflt
Cmp_FwdInvOwn

RspFwdI
DataC_M Cmp

Cmp

AckCnflt

2

1

3

4

5

6

8

9

7

MR

Data

Maximum message path: 9
Source Snooping

Total messages: 14

(QPI source: Maddox, Singh & Safranek)

Point-to-Point Networks

•  Complete interconnect grows as N2

•  Build up hierarchically from small networks
•  “Agent” appears as a single node (cache

and/or memory), but represents the rest of
the system

6Nov09 70 Source Snooping

Open Questions

•  Source snooping protocols have not been widely
publicized or studied, but are now in products.
What are the trade-offs?

•  What are the benefits and costs of partial ordering of
messages?

•  Anticipating cache miss on unshared data trades off
power for latency—can we do better?
–  Small systems: dynamic policies
–  Large systems: home snooping vs. hierarchical source-

snoop
•  Is this approach compatible with token coherence

and other schemes to reduce broadcast?

6Nov09 71 Source Snooping

Thank you!

6Nov09 72 Source Snooping

