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Source Snooping Cache Coherence Protocols 

The gap between point-to-point network speeds and buses has grown 
dramatically in the last few years, leaving the dominant, bus-based snoopy cache 
coherence methods disadvantaged.  Directory-based schemes use point-to-point 
networks and scale to large numbers of processors, but generally require at least 
three hops for most cache misses, making them slow for small- or medium-sized 
systems.  Point-to-point networks can be used to broadcast, but the global 
ordering and synchronization provided by a bus are missing.  Intel recently 
introduced a new cache coherence protocol as part of the QuickPath Interface 
(QPI), replacing the Front Side Bus (FSB).  QPI includes the first example of a 
"source snooping" protocol to be introduced into a commercial product. 

We will discuss source snooping protocols, showing how they can combine both 
the scalability of directories with the two-hop access delay of snooping caches.  We 
will describe some of the challenges and trade-offs by means of two examples: QPI 
and MESIF, an ancestral protocol developed in 2001. 
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intel Confidential

Disclaimer: I Don’t Speak for Intel… 
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QPI Reference 

R.A. Maddox, G. Singh and R.J. Safranek, 
Weaving High Performance Multiprocessor 
Fabric—Architectural insights into the Intel 
QuickPath Interconnect,” Intel Press, 2009. 
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QPI 

The Quick Path Interconnect (QPI) was recently 
introduced by Intel to replace the Front Side Bus 
•  Link Layer: QPI Link Pairs 

– “Pre-emphasis clocking” 
–  Intel: “Transmitter Equalization” 
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Our 2001 Goals 

Develop a point-to-point cache coherency protocol that: 
–  Is efficient for a small number of nodes 
–  Has benefits of a bus protocol in terms of hops 
–  Does not require Backoff/Retry 
–  Maximizes throughput by handling concurrent requests   

efficiently  
–  Is not dependent on the switching fabric (i.e., no ordering 

required) 
–  Can scale in a hierarchical fashion 

•  Does not rely on a directory scheme 
•  Is directory-compatible in large systems 

–  Supports all memory models, including sequential 
consistency 
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•  Directories for large Systems (?) 
•  Home-Snoop Option 
– Appears similar to Archibald/Baer’s “2-bit 

solution” (1984) 

•  Source-Snoop Option

QPI Protocol Layer 
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Characteristics 
–  Is efficient for a small number of nodes 
–  Has benefits of a bus protocol in terms of hops 
–  Does not require Backoff/Retry 
–  Maximizes throughput by handling concurrent requests 

efficiently  
–  Is dependent on the switching fabric (i.e., no ordering 

required) 
–  Can scale in a hierarchical fashion 

•  Does not rely on a directory scheme 
•  Is directory-compatible in large systems 

QPI Source Snoop Protocol 
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Develop a point-to-point cache coherency protocol that: 
–  Is efficient for a small number of nodes 
–  Has benefits of a bus protocol in terms of hops 
–  Does not require Backoff/Retry 
–  Maximizes throughput by handling concurrent requests 

efficiently  
–  Not dependent on the switching fabric (i.e., no ordering 

required) 
–  Can scale in a hierarchical fashion 

•  Does not rely on a directory scheme 
•  Is directory-compatible in large systems 

–  Supports all memory models, including sequential 
consistency 

Our 2001 Goals 
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Characteristics 
–  Is efficient for a small number of nodes 
–  Has benefits of a bus protocol in terms of hops 
–  Does not require Backoff/Retry 
–  Maximizes throughput by handling concurrent requests 

efficiently  
–   (Not) Dependent on the switching fabric (i.e., no ordering 

required) 
–  Can scale in a hierarchical fashion 

•  Does not rely on a directory scheme 
•  Is directory-compatible in large systems 

–  Supports all memory models, including sequential 
consistency (???) 

QPI Source Snoop Protocol 
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Cache Memory—A Review   

•  Coherence States (MESI) 
•  Directories 
•  Snooping 
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Coherence States 
•  MESI 

–  Invalid 
•  Not present or stale 

–  Shared 
•  Readable 
•  May be other cached copies 

–  Modified 
•  Writable 
•  Only valid copy 
•  Main Memory is stale 

–  Exclusive 
•  Writable 
•  Memory is consistent 

•  Extensions 
–  MOESI also includes Owned 
–  MESIF: Forward (optimization) 
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Directories [1976] 

+ Scalable 
+ “The Future” since the 1970s 

- Multihop 
- Require 3+ sequential hops for most common 

operations 

- Optimized for large systems 
- Slow even for small systems 

- No large-scale commercial success 
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Snoopy Caches [1982]   

+ Quicker access to shared data 
+ Exploit broadcast capability 
+ Bus defines order 
– Many limits on scalability 
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Observed Trends 

•  Buses are out of gas - nasty transmission line 
•  Point-to-point, one-directional wires can be 

very fast 
•  Systems are hierarchical 
•  Small number of nodes is often a sweet spot 
•  Caches can provide data faster than main 

memory 
–  Sharing is increasingly important in cache misses 

6Nov09  18 Source Snooping 



Point-to-Point Links 

•  Good properties 
– Fast 
– Robust 
– Can be indirect 

•  Observation: point-to-point links can be 
used to “broadcast” 
– Need complete interconnect? 

•  May not scale, but works for small numbers 

6Nov09  19 Source Snooping 



Idea: Replace a bus with point-
to-point links and snoop 

Good idea, but buses support (and 
snooping protocols exploit) 
–  Intervention 
–  Conflicts 
–  Ordering 
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State of the Art, 2001 
Focus on ordering requests entering network: 

–  P.F. Reynolds, Jr., C. Williams, and R.R. Wagner, Jr., “Isotach networks,” IEEE Transactions 
on Parallel and Distributed Systems, vol. 8, no. 4, pp. 337-348, April 1997. 

–  J. Regehr, “An isotach implementation for Myrinet,” Technical Report CS-97-12, Dept. of 
Computer Science, University of Virginia, May 1997. 

–  A.E. Condon, et al., “Using Lamport clocks to reason about relaxed memory models,” in 
Proceedings of the 5th International Symposium on High Performance Computer Architecture, 
Orlando, Florida, January 1999. 

–  E.E. Bilir, R.M. Dickson, Y. Hu, M. Plakal, D.J. Sorin, M.D. Hill, and D.A. Wood, 
“Multicast snooping: a new coherence method using a multicast address network,” in 
Proceedings of the 26th International Symposium on Computer Architecture, Atlanta, Georgia, 
May 1999.  

–  M.K.M. Martin, D.J. Sorin, A. Ailamaki, A.R. Alameldeen, R.M. Dickson, C.J. Mauer, K.E. 
Moore, M. Plakal, M.D. Hill, D.A. Wood, “Timestamp Snooping: An Approach for 
Extending SMPs,” in Proceedings of the Ninth International Conference on Architectural 
Support for Programming Languages and Operating Systems (ASPLOS-IX), Cambridge, 
Massachusetts, November 13-15, 2000.  
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State of the Art, 2009 

Focus on ordering requests entering network: 
–  N. Agarwal, L-S. Peh and N.K. Jha, “In-Network Snoop Ordering 

(INSO): Snoopy Coherence on Unordered Interconnects,” 15th 
International Conference on High-Performance Computer Architecture 
(HPCA-15), February 2009, Raleigh, North Carolina, USA 2009 

“There are many different interpretations of snoopy protocols. We use snoopy 
to imply a broadcast protocol in which requests are sent directly to other 
nodes in the system, without having to go to an ordering point. Other 

nodes in the system “snoop” to determine whether the request is meant for 
them and act accordingly.“ 

“We propose In-Network Snoop Ordering (INSO), in which coherence 
requests from a snoop-based protocol are inserted into the interconnect 

fabric and the network orders the requests in a distributed manner, creating 
a global ordering among requests.” 
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Insight 

The network does not need to provide ordering 
•  The network must inform a node when it is 

safe to expose modifications 
•  Global ordering can be achieved if each 

processor orders its own memory operations, 
assuring changes in values are observable only 
after the instruction has committed. 

•  Nodes can collectively detect conflicts and 
prevent instructions from committing until 
they are resolved. 
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Our System Model 
•  A node may include 

–  A processor, which generates memory requests 
–  A cache, which may contain redundant copies (or the only copy) of 

parts of the address space 
–  Main memory for some part of the address space 

•  A point-to-point communication network 
–  Provides pair-wise communication paths that connect all nodes, 

possibly indirectly 
–  Reliably delivers messages 
–  Is unordered 

•  Each address resides at a “Home” node, and may be cached in 
some or all nodes 

•  A node may consist of multiple nodes connected by a 
communication network and behaving as if it were a single node 
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MESIF (mas’iv) Protocol 



Message Sequence Diagrams 

ABC  Caching Agents 
H  Home node (possibly including cache) 
MC  Memory Controller 

 Request 
 Response without data 
 Response with data 
 Conflict response 
 Acknowledgement of Response 
 Forwarding command 
 Completion 
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Read Uncached Line (Directory) 
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A  B  C  H  MC 
I I I 

I➙S 

Directory lookup 
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Read Uncached Line (MESI) 

6Nov09  33 

A  B  C  H  MC 
I I I 

I➙E 

Source Snooping 



Read Shared (Directory) 
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Directory lookup 



S F 
A  B  C  H  MC 

I S 

I➙F 
F➙S 

Read Shared (MESI)F (MESIF) 
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Read for Ownership (Directory) 
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Read for Ownership (MESIF) 
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S➙E 
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Upgrade/Invalidate (Directory) 

S➙I 
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F➙I 

Directory lookup 
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Upgrade/Invalidate (MESIF) 
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What about conflicts? 



Read for Ownership (Conflict) 
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Conflicts  

Conflicts between X and Y will always be 
detected if X sends cache request to Y and Y 
sends cache request to X 
– Both may detect 
– At least one will detect 
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Read for Ownership (Conflict) 
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A must await 
response from C, 

then ack B 

C would detect 
conflict with A 

here 
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M➙? 

?➙I 

Read for Ownership (Conflict) 
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Conflict(C) 
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DACK  Wait 



Resolving Conflicts 

•  For more complex conflicts, a single point is 
required to sort out conflicts 

•  Home: 
– Does not determine the winner (FCFS) 
– Arranges for losers to be included 
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Global Ordering Point 

•  The Global Ordering (G.O.) point for a write 
instruction is the time when the system can 
guarantee no previous value can be 
observed; the instruction may now make 
visible a new value. 

•  A write instruction may finish executing an 
instruction and retire it, but cannot commit it 
until the G.O. point. 
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Making MESIF Safe 
•  In the MESIF protocol using HOME as the conflict resolution 

point requires 
–  Home included with other nodes 

•  Home does not respond 
–  Cache-to-cache responses must report conflicts, if any 
–  A second message to Home confirming or cancelling the original 

request 
•  Message must indicate any conflicts observed 

–  Memory must resolve conflicts and delay confirmation until 
resolved 

–  Responses from memory to both requesters confirming the order 
•  Winning processor is instructed to forward data to loser 
•  Losing processor receives acknowledgement but no data 
•  Losing processor receives data from winner 
•  Multiple losers are queued 

–  Processors may use data when it arrives, but may not make it 
visible until Home confirms. 
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Read Uncached Line (MESIF) 

6Nov09  56 

A  B  C  H  MC 
I I I 

I➙E 
Source Snooping 



S F 

Read Shared (MESIF) 
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Read for Ownership (MESIF) 
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QPI Protocol 

•  Responses are sent to Home to collect rather 
than to requester 
– Data is sent directly to requester 

•  Home sends acknowledgement to requester 
– Data is included if not already delivered 

•  Home must be told of conflicts 
–  Issues forwarding/wait directives 
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Read Uncached Line (QPI) 
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Read Shared (QPI?) 
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Read for Ownership (QPI) 
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Comparison of QPI & MESIF 

•  QPI specification is not public 
•  Comparison is not straightforward 
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QPI & MESIF 

•  QPI requires ordered messages to/from 
Home 

•  MESIF and QPI provide cache-to-cache 
data in same time 

•  In simple (common) cases, QPI requires: 
– one fewer message 
– shorter path to G.O. point 

•  MESIF requires fewer messages, has shorter 
path length in conflicts 
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Read for Ownership (MESIF) 
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Read for Ownership (QPI) 

6Nov09  69 

A  B  H  MC 
I I 

I➙E 

I➙M 
M➙I 

RdInvOwn 

RdInvOwn RspCnflt 

SnpInvOwn 

RspConflt 
DataE,FrcAckCnflt 

AckCnflt 
Cmp_FwdInvOwn 

RspFwdI 
DataC_M  Cmp 

Cmp 

AckCnflt 

2 

1 

3 

4 

5 

6 

8 

9 

7 

MR 

Data 

Maximum message path: 9 
Source Snooping 
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(QPI source: Maddox, Singh & Safranek) 



Point-to-Point Networks 

•  Complete interconnect grows as N2 

•  Build up hierarchically from small networks 
•  “Agent” appears as a single node (cache 

and/or memory), but represents the rest of 
the system 
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Open Questions 

•  Source snooping protocols have not been widely 
publicized or studied, but are now in products.  
What are the trade-offs? 

•  What are the benefits and costs of partial ordering of 
messages? 

•  Anticipating cache miss on unshared data trades off 
power for latency—can we do better? 
–  Small systems: dynamic policies 
–  Large systems: home snooping vs. hierarchical source-

snoop 
•  Is this approach compatible with token coherence 

and other schemes to reduce broadcast? 
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Thank you! 
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