Once you understand how to write a program, get someone else to write it.

Alan Perlis, Epigram #27
The Exascale Programming Challenge
The Exascale Programming Challenge

More levels of hierarchy

Accelerators everywhere

The revenge of Ahmdal’s Law

Programmers will be swamped in design choices
The Exascale Programming Opportunity
How can CPU cycles help in programming?
The SKETCH Language

try it at bit.ly/sketch-language
SKETCH: just two constructs

spec:
```c
int foo (int x) {
    return x + x;
}
```

sketch:
```c
int bar (int x) implements foo {
    return x << ??;
}
```

result:
```c
int bar (int x) implements foo {
    return x << 1;
}
```
SKETCH is synthesis from partial programs

No need for a domain theory. No rules needed to rewrite $x+x$ into $2\times x$ into $x<<1$
Demo 1: division of a polynomial

```c
int spec (int x) {
    return x*x*x-19*x+30;
}

#define Root { | ?? | -?? |}

int sketch (int x) implements spec {
    return (x - Root) * (x - Root) * (x - Root);
}
```

Note: Sketch divides polynomials slowly but it knows nothing about finding roots of polynomials. This generality enables it to do synthesis of arbitrary programs.
Example: Silver Medal in a SKETCH contest

4x4-matrix transpose, the specification:

```c
int[16] trans(int[16] M) {
    int[16] T = 0;
    for (int i = 0; i < 4; i++)
        for (int j = 0; j < 4; j++)
            T[4 * i + j] = M[4 * j + i];
    return T;
}
```

Implementation idea: parallelize with SIMD
Intel shufps SIMD instruction

SHUFP (shuffle parallel scalars) instruction

\[\text{x1} \quad \text{return} \quad \text{x2} \]
The SIMD matrix transpose, sketched

```c
int[16] trans_sse(int[16] M) implements trans {
    int[16] S = 0, T = 0;
    repeat (??) S[??::4] = shufps(M[??::4], M[??::4], ??);
    repeat (??) T[??::4] = shufps(S[??::4], S[??::4], ??);
    return T;
}
```

```c
int[16] trans_sse(int[16] M) implements trans { // synthesized code
    S[4::4] = shufps(M[6::4], M[2::4], 11001000b);
    S[0::4] = shufps(M[11::4], M[6::4], 10010110b);
    S[12::4] = shufps(M[0::4], M[2::4], 10001101b);
    S[8::4] = shufps(M[8::4], M[12::4], 11010111b);
    T[4::4] = shufps(S[11::4], S[1::4], 10111100b);
    T[12::4] = shufps(S[3::4], M[12::4], 11010111b);
    T[8::4] = shufps(S[4::4], M[12::4], 11010111b);
    T[0::4] = shufps(S[1::4], S[0::4], 10110100b);
}
```

From the contestant email:
Over the summer, I spent about 1/2 a day manually figuring it out.

Synthesis time: 30 minutes.
Demo 2: 4x4 matrix transpose

```c
pragma options "--bnd-unroll-amnt 6 --bnd-inbits 3 --bnd-cbits 6";

int[16] transpose(int[16] mx){
    int x, y;
    for(x = 0; x < 4; x++)
        for(y = 0; y <= x; y++)
            mx[4*x+y] = mx[4*y+x];
    return mx;
}

    int[4] ret;
    ret[0] = xmm1[(int)imm8[0::2]];
    ret[1] = xmm1[(int)imm8[2::2]];
    ret[2] = xmm2[(int)imm8[4::2]];
    ret[3] = xmm2[(int)imm8[6::2]];
    return ret;
}

int[16] sse_transpose(int[16] mx) implements transpose {
    int[16] p0 = 0;
    int[16] p1 = 0;
    // Find the extra insight (constraint) that this version communicates to the synthesizer.
    int steps = ??;
    loop(steps){ p0[??::4] = shufps(mx[??::4], mx[??::4], ??); }
    loop(steps){ p1[??::4] = shufps(p0[??::4], p0[??::4], ??); }
    return p1;
}
```
How can synthesis help?

In this example, our programmer possessed enough knowledge to actually write the program himself.

The synthesizer saved him from tedious details, like a compiler.

Note we did not have to teach that compiler any SIMD optimizations, as is usually necessary.

In the next example, the synthesizer will help us find the program (actually, a solution to a puzzle). We could not solve the problem without the synthesizer.
The Hat Game

There are n players in a room. Someone will soon come by and put hats labeled 0 to $n-1$ on each of their heads. There may be multiple hats with the same number.

Once the hats are in place, the players cannot communicate. Each player must then guess which hat is on their head. A player can see everyone else’s hat, but not their own.

The challenge is for the group to come up with a strategy such that at least one person correctly guesses their own hat.

Assume the group knows n before they strategize.
Finding a winning strategy for n=2

There are only 16 strategies to consider.
We can find a winning one manually.

<table>
<thead>
<tr>
<th>Color of hat the player can see</th>
<th>What player P0 will guess</th>
<th>What player P1 will guess</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[0 \\
\]

\[1 \\
\]

\[P0 \]

\[P1 \]
Finding a winning strategy for $n=3$

There are now $7,625,597,484,987$ possible strategies. We gave up on finding a winning one manually.

<table>
<thead>
<tr>
<th>Colors of hats the player sees</th>
<th>What player P0 will guess</th>
<th>What player P1 will guess</th>
<th>What player P2 will guess</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The synthesis correctness condition \((n=3)\)

\[
p0_strategy(p1_hat, p2_hat) : \text{int} \{
 p0 : \text{int}[3][3] = \{
 ??(0,1,2), ??(0,1,2) ...

 \text{return } p0[p1_hat][p2_hat];
\}
\]

...

forall \((i, j, k)\) from \(i, j, k\) in \([0,2]\)
assert \(i = p0_strategy(j, k)\)
 \text{ or } \(j = p1_strategy(i, k)\)
 \text{ or } \(k = p2_strategy(i, j)\)
Computing a winning strategy for \(n=3 \)

We asked an oracle to compute a winning strategy. There are 10,752 of them.

<table>
<thead>
<tr>
<th>Colors of hats the player sees</th>
<th>What player P0 will guess</th>
<th>What player P1 will guess</th>
<th>What player P2 will guess</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0,1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0,2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1,0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1,1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1,2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2,0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2,1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2,2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
The Hat Game, Revisited

Now assume that the players do not know the total number of players, n, or their own id, k, until the hats are placed.

Their winning strategy thus must be a function $f(k, n, hats)$.

Our goal is to devise such a function f. This is our “program”.

We (humans) will observe the (oracle’s) winning strategies for $n=3$ and generalize them for arbitrary n.
Generalizing from $n=3$ to arbitrary n.

Here is one of the 10,752 winning strategies. Sadly, the algorithmic pattern is not visible.

<table>
<thead>
<tr>
<th>Colors of hats the player sees</th>
<th>What player P0 will guess</th>
<th>What player P1 will guess</th>
<th>What player P2 will guess</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0,1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0,2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1,0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1,1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1,2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2,0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2,1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2,2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Idea 1: **Interact** with the oracle

Fix a strategy for P0 and ask what P1 and P2 strategies yield a winning group strategy. There are 8 of them.

<table>
<thead>
<tr>
<th>Colors of hats the player sees</th>
<th>What player P0 will guess</th>
<th>What player P1 will guess</th>
<th>What player P2 will guess</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0,1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0,2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1,0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1,1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1,2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2,0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2,1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2,2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Idea 2: **Mine** oracle’s alternative solutions

It turns out that a winning strategy can be composed from any combination of smaller strategies.

<table>
<thead>
<tr>
<th>Colors of hats the player sees</th>
<th>What player P0 will guess</th>
<th>What player P1 will guess</th>
<th>What player P2 will guess</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0,1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0,2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1,0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1,1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1,2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2,0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2,1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2,2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Idea 3: Ask the system to *synthesize* \(f \)

We tell the system “synthesize \(f \) that uses +,- and %”

\[
f(k,n,hats) = “a program with +,-,%,sum”
\]

and the system produces the function

\[
f(k,n,hats) = (k - 1 - \text{sum}(hats)) \% n
\]

which is a winning strategy parametric in \(k, n \).
Summary

Ask oracle to compute all strategies (programs) for $n=3$.

Interact with the oracle by constraining it and observing what solutions remain.

Decompose the solutions to see if a strategy can be composed from smaller strategies.

Synthesize the function that is the parametric strategy.
Beyond synthesis of constants

Sometimes the insight is “I want to complete the hole with an of particular syntactic form.”

- Array index expressions: \[A[???i+???j+??] \]
- Polynomial of degree 2: \[???x^2 + ???x + ?? \]
- Initialize a lookup table: \[\text{int strategy}[N] = \{??,??,??,??,??\} \]
Angelic Programming
What's your memory of Red-Black Tree?

```c
left_rotate( Tree T, node x ) {
    node y;
    y = x->right;
    /* Turn y's left sub-tree into x's right sub-tree */
    x->right = y->left;
    if ( y->left != NULL )
        y->left->parent = x;
    /* y's new parent was x's parent */
    y->parent = x->parent;
    /* First see whether we're at the root */
    if ( x->parent == NULL ) T->root = y;
    else
        if ( x == (x->parent)->left )
            /* x was on the left of its parent */
            x->parent->left = y;
        else
            /* x must have been on the right */
            x->parent->right = y;
    /* Finally, put x on y's left */
    y->left = x;
    x->parent = y;
}
```

http://www.cs.auckland.ac.nz/software/AlgAnim/red_black.html
Jim Demmel's napkin
Programmers often think with examples

They often design algorithms by devising and studying examples demonstrating steps of algorithm at hand.

If only the programmer could ask for a demonstration of the desired algorithm!

The demonstration (a trace) reveals the insight.

We create demonstration with an executable oracle.
Angelic choice

Angelic nondeterminism.

Oracle makes an angelic (clairvoyant) choice.

\[!!(S) \] evaluates to a value chosen from set \(S \) such that the execution terminates without violating an assertion.
Programming with oracles (DFS)

Design DFS traversal that does not use a stack.

Used in garbage collection: when out of memory, you cannot ask for $O(N)$ memory to mark reachable nodes.

We want DFS that uses $O(1)$ memory.
Depth-first search with explicit stack

```java
vroot = new Node(g.root)
push(vroot); current = g.root

while (current != vroot) {
    if (!current.visited) current.visited = true
    if (current has unvisited children) {
        current.idx := index of first unvisited child
        child = current.children[current.idx]
push(current)
current = child
    } else {
        current = pop()
    }
}
```
Parasitic Stack

Borrows storage from its host (the graph)
accesses the host graph via pointers present in traversal code

A two-part interface:
stack: usual push and pop semantics
parasitic channel: for borrowing/returning storage

push(\(x, (node_1, node_2, \ldots)\)) stack can (try to) borrow fields in \(node_i\)
pop(\(node_1, node_2, \ldots\)) value \(node_i\) may be handy in returning storage

Parasitic stack expresses an optimization idea
But can DFS be modularized this way? Angels will tell us.
vroot = new Node(root)
push(null); current = vroot

while (current != vroot) {
 if (!current.visited) current.visited = true
 if (current has unvisited children) {
 current.idx := index of first unvisited child
 child = current.children[current.idx]
push(current, (current, child))
current = child
 } else {
 current = pop((current))
 }
}
Angels perform deep global reasoning

Which location to borrow?

traversal must not need until it is returned

How to restore the value in the borrowed location?

the stack does not have enough locations to remember it

How to use the borrowed location?

it must implement a stack

Angels will clairvoyantly made these decisions for us

– in principle, human could set up this parasitic “wiring”,
 too, but we failed without the help of the angels
ParasiticStack.push

class ParasiticStack {
 var e // allow ourselves one extra storage locatio

 push(x, nodes) {
 // borrow memory location n.children[c]
 n = choose(nodes)
 c = choose(0 until n.children.length)

 // value in the borrowed location; will need to be restored
 v = n.children[c]

 // we are holding 4 values but have only 2 memory locations
 // select which 2 values to remember, and where
 e, n.children[c] = angelicallyPermute(x, n, v, e)
 }
}
ParasiticStack.pop

```java
pop(values) {
    // ask the angel which location we borrowed at time of push
    n = choose(e, values)
    c = choose(0 until n.children.length)

    // v is the value stored in the borrowed location
    v = n.children[c]

    // (1) select return value
    // (2) restore value in the borrowed location
    // (3) update the extra location e
    r, n.children[c], e = angelicallyPermute(n, v, e, values)

    return r
}
```
Running the angelic program

8040 solutions synthesized

<table>
<thead>
<tr>
<th>e</th>
<th>Push root</th>
<th>Push A</th>
<th>Pop B</th>
<th>Push A</th>
<th>Push C</th>
<th>Pop D</th>
<th>Pop A</th>
<th>Pop root</th>
</tr>
</thead>
</table>

| n | c | r | child | e |

Input: `A`
Base: B, C, D
Root: A

Chooses in push: `n c e child`

Chooses in pop: `n c r child e`
Example of an undesirable trace

Undesirable traces meet the spec but do not demonstrate a desirable algorithm

// choose initial value for extra storage

e = choose(nodes)

push(..)

n.children[c] = angelPermute(x,n,v,e) // e
Interactions in DFS

Each box represents one oracle

- All red oracles are coordinating with each other
- All yellow oracles are coordinating with each other
- All white oracles are completely independent
Let's refine the angelic program

class ParasiticStack {
 var e : Node

 push(x, nodes) {
 n = choose(nodes)
 c = choose(0 until n.children.length)
 e, n.children[c] = angelicallyPermute(x,n,v,e)
 }

 pop(values) {
 n = choose(e, values)
 c = choose(0 until n.children.length)
 v = n.children[c]
 r, n.children[c], e = angelicallyPermute(n,v,e,values)
 return r
 }
}
First we observe what these angels do

```java
class ParasiticStack {
    var e : Node

    push(x, nodes) {
        n = choose(nodes)
        c = choose(0 until n.children.length)
        e, n.children[c] = angelicallyPermute(x, n, v, e)
    }

    pop(values) {
        n = choose(e, values)
        c = choose(0 until n.children.length)
        v = n.children[c]
        r, n.children[c], e = angelicallyPermute(n, v, e, values)
        return r
    }
}
```
Refinement #1

class ParasiticStack {
 var e : Node

 push(x, nodes) {
 n = choose(nodes)
 c = choose(0 until n.children.length)
 e, n.children[c] = x, e
 }

 pop(values) {
 n = e
 c = choose(0 until n.children.length)
 v = n.children[c]
 r, n.children[c],e = e, values[0], v
 return r
 }
}
Refinement #1

class ParasiticStack {
 var e : Node

 push(x, nodes) {
 n = choose(nodes)
 c = choose(0 until n.children.length)
 e, n.children[c] = x, e
 }

 pop(values) {
 n = e
 c = choose(0 until n.children.length)
 v = n.children[c]
 r, n.children[c], e = e, values[0], v
 return r
 }
}
Refinement #2

class ParasiticStack {
 var e : Node

 push(x, nodes) {
 n = nodes[0]
 c = choose(0 until n.children.length)
 e, n.children[c] = x, e
 }

 pop(values) {
 n = e
 c = choose(0 until n.children.length)
 v = n.children[c]
 r, n.children[c], e = e, values[0], v
 return r
 }
}
Refinement #2

```java
class ParasiticStack {
    var e : Node

    push(x, nodes) {
        n = nodes[0]
        c = \texttt{choose}(0 \text{ until } n\.children\.length)
        e, n\.children[c] = x, e
    }

    pop(values) {
        n = e
        c = \texttt{choose}(0 \text{ until } n\.children\.length)
        v = n\.children[c]
        r, n\.children[c], e = e, values[0], v
        return r
    }
}
```
class ParasiticStack {
 var e : Node
 push(x, nodes) { invariant: c == n.idx
 n = nodes[0]
 c = choose(0 until n.children.length)
 e, n.children[c] = x, e
 }
 pop(values) {
 n = e
 c = choose(0 until n.children.length)
 v = n.children[c]
 r, n.children[c], e = e, values[0], v
 return r
 }
}
Final refinement

```java
class ParasiticStack {
    var e : Node
    push(x, nodes) {
        n = nodes[0]
        e, n.children[n.idx] = x, e
    }
    pop(values) {
        n = e
        v = n.children[n.idx]
        r, n.children[n.idx], e = e, values[0], v
        return r
    }
}
```
Our results: what we synthesized

Concurrent Data Structures [PLDI 2008]
 lock free lists and barriers

Stencils [PLDI 2007]
 highly optimized matrix codes

Dynamic Programming Algorithms [OOPSLA 2011]
 O(N) algorithms, including parallel ones
To be continued after lunch

How to implement the oracles (synthesis algorithms)

Hiding sketches from programmers

Similar synthesizers and the space of synthesis ideas