Synthesis Of Dynamic Programming Algorithms

Yewen (Evan) Pu
Rastislav Bodik
Saurabh Srivastava
Synthesis of DP: Why?

- Dynamic Programming is ParLab pattern #10

- Dynamic Programming is prevalent:
 - AI: variable elimination, value iteration
 - Biology: Gene matching
 - Database: Query optimization

- Dynamic Programming is difficult

- Certain Dynamic Programming Algorithm can be parallelized
Synthesis of DP: Goal

Synthesizer for a subset of DP
- First-order recurrence: Captures O(n) DP
- A domain-specific parameterizable compiler
- Input: Specifications, Output: Algorithms
- Building block for harder DP algorithms
Dynamic Programming

Speed up search algorithm that is exponential runtime by combining common sub-problems

Example: fib(n)
Challenges in DP algorithm design

Invent sub-problems: Decompose original problem
Sub-problems may not be explicitly stated in the original problem.

We may need to invent different sub-problems.

Recurrence: Solve problem from its sub-problems
Formulate recurrences over the new sub-problems that puts them back together
Maximal Segment Sum

Given an array of positive and negative integers, find the greatest sum of a consecutive substring.
Maximal Segment Sum

Given an array of positive and negative integers, find the greatest sum of a consecutive substring.

```python
def naive_mss(array):
    best = 0
    for i from 0 to n-1:
        for j from i to n-1:
            v = sum(array[i,j])
            best = max(best, v)
    return best

def linear_mss(array):
    best_suffix = array()
    best_sofar = array()
    best_suffix[0] = 0
    best_sofar[0] = 0
    for i from 1 to n:
        best_suffix[i] = max(best_suffix[i-1]+array[i-1],0)
        best_sofar[i] = max(best_suffix[i-1], best_sofar)
    return best_sofar[n]
```

Given an array of positive and negative integers, find the greatest sum of a consecutive substring.
Maximal Segment Sum

Given an array of positive and negative integers, find the greatest sum of a consecutive substring.

naive_mss(array):
 best = 0
 for i from 0 to n-1:
 for j from i to n-1:
 v = sum(array[i,j])
 best = max(best, v)
 return best

linear_mss(array):
 best_suffix[0] = 0
 best_sofar[0] = 0
 for i from 1 to n:
 best_suffix[i] = best_sofar[i-1] + array[i]
 best_sofar[i] = max(best_sofar[i-1], best_suffix[i])
 return best_sofar[n]
Synthesizer Work-flow
Maximal Independent Sum (MIS)

Input: Array of positive integers

Output: Maximal sum of a non-consecutive selections of its elements.
Synthesizer Work-flow
Exponential Specification

The user can define a specification as an exponential algorithm for MIS, it is:

\[
\text{mis}(A):
\]
\[
\text{best} = 0
\]
\[
\text{forall selections:}
\]
\[
\text{if legal(selection):
}\]
\[
\text{best} = \max(\text{best}, \text{value}(A[\text{selection}])))
\]
\[
\text{return best}
\]
Synthesizer Work-flow
Parameters

- Comes from the user
- For simple problems, extract from specification

For MIS:
Synthesizer Work-flow
linear_mis(A):
 \text{tmp1} = \text{array()}
 \text{tmp2} = \text{array()}
 \text{tmp1}[0] = \text{initialize1()}
 \text{tmp2}[0] = \text{initialize2()}
 \text{for i from 1 to n:}
 \text{tmp1}[i] = \text{update1(tmp1[i-1],tmp2[i-1],A[i-1])}
 \text{tmp2}[i] = \text{update2(tmp1[i-1],tmp2[i-1],A[i-1])}
 \text{return term(tmp1[n],tmp2[n])}
Update: Propagating Forward

- Constructed from user’s parameters
- Enumerates all compositions of operations
- Selects the correct program

\[
\text{update1}(x,y,z) = \text{choose_from(} \\
\{0, x, y, z, \ldots x+y, \ldots, \max(x,y)+z, \ldots\})
\]

- For m sub-problems and n operators:
 Total of \(O((m^m n^m)^m)\) possible programs
Synthesizer Work-flow
MIS: The solution algorithm

```python
linear_mis(A):
    tmp1 = array()
    tmp2 = array()
    tmp1[0] = 0
    tmp2[0] = 0
    for i from 1 to n:
        tmp1[i] = tmp2[i-1] + A[i-1]
        tmp2[i] = max(tmp1[i-1], tmp2[i-1])
    return max(tmp1[n], tmp2[n])
```
The Problem:

Given an array of integers: \(A = [a_1, a_2, ..., a_n] \),
return: \(B = [b_1, b_2, ..., b_n] \)
such that: \(b_i = a_1 + ... + a_n - a_i \)

Do it in \(O(n) \) and cannot use subtraction?
Composition of Skeletons

puzzle(A):
 B = skeleton1(A)
 C = skeleton2(A,B)
 D = skeleton3(A,B,C)
 return D
Solution

puzzle(A):
 B = skeleton1(A)
 C = skeleton2(A,B)
 D = skeleton3(A,B,C)
 return D

skeleton1(A):
 tmp1 = array()
 tmp1[0] = 0
 for i from 1 to n-1:
 return tmp1

skeleton2(A,B):
 tmp2 = array()
 tmp2[n-1] = 0
 for i from 1 to n-1:

skeleton3(A,B,C):
 tmp3 = array()
 for i from 0 to n-1:
 tmp3[i] = B[i] + C[i]
 return tmp3
Synthesis of Parallelization: Prefix Sum

Compute a F.O.R. out of order

Goal: synthesize an associative function that allows solving the problem in parallel, as a prefix sum.

The Approach: Exactly the same. The Skeleton is now a tree, the update needs to be associative.

```
```
Synthesized associative operator for MIS

This operator requires invention of 4 sub-problems
Scalabilities of Synthesizer

\[
\text{update1}(x,y,z) = \text{choose_from}(
\{0,x,y,z,...x+y,...,\max(x,y)+z,...\}
)\
\]

- For \(m\) sub-problems and \(n\) operators:
 Total of \(O((m^m n^m)^m)\) possible programs, many of them are redundant.

Reduce the search space by:
- Symmetry reduction of commutative binary operators
- Apply unary operators at the leaves
- Encode DP optimality structure
Scalabilities of Synthesizer

- Enumeration
- Symmetry Reduction
- Unary
- Optimality

Bars for MIS (2), MSS (2), MAS (3), MMM (3), ASSM (4)
Comparison to Other Approaches

Suppose the user wants to write a DP algorithm...
Future Works

- Synthesis of Real World Problems
- Synthesis of more prefix sum (on these problems)
- Other DP Problems (that are not F.O.R)
- Further scalability tricks
- Complete the pipe (implementation on GPU)
The End: Questions?