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Outline 
• Productive parallel computing depends on recognizing and 

exploiting useful patterns 
• Computational (7 Motifs) and Structural 

• Simplest case: use “best” existing highly tuned implementation 
• Best: Fastest? Most accurate? Fewest keystrokes? 

• Optimizing (some of) the 7 Motifs 
• To minimize time or energy, minimize communication (moving data) 

• Between levels of the memory hierarchy 
• Between processors over a network 

• Autotuning to explore large design spaces 
• Too hard (tedious) to write by hand, let machine do it 

• SEJITS – how to deliver autotuning to more programmers  
• For more details, see 

• CS267: www.cs.berkeley.edu/~demmel/cs267_Spr12 
• 10-hour short course: issnla2010.ba.cnr.it/Courses.htm 
• Papers at bebop.cs.berkeley.edu, parlab.eecs.berkeley.edu 

     



“7 Motifs”  of High Performance Computing 

• Phil Colella (LBL) identified 7 kernels of which most 
simulation and data-analysis programs are composed: 

  

1. Dense Linear Algebra 
• Ex: Solve Ax=b or Ax = λx where A is a dense matrix 

2. Sparse Linear Algebra 
• Ex: Solve Ax=b or Ax = λx where A is a sparse matrix (mostly zero) 

3. Operations on Structured Grids 
• Ex: Anew(i,j) = 4*A(i,j) – A(i-1,j) – A(i+1,j) – A(i,j-1) – A(i,j+1) 

4. Operations on Unstructured Grids 
• Ex: Similar, but list of neighbors varies from entry to entry 

5. Spectral Methods 
• Ex: Fast Fourier Transform (FFT) 

6. Particle Methods 
• Ex: Compute electrostatic forces on n particles 

7. Monte Carlo 
• Ex: Many independent simulations using different inputs 
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Organizing Linear Algebra Motifs -   
in books and on-line 

www.netlib.org/lapack www.netlib.org/scalapack 

www.cs.utk.edu/~dongarra/etemplates www.netlib.org/templates 

gams.nist.gov 

      



Why Minimize Communication? (1/2) 
• Running time of an algorithm is sum of 3 terms: 

– # flops * time_per_flop 
– # words moved / bandwidth 
– # messages * latency 
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communication 

• Time_per_flop  <<  1/ bandwidth  <<  latency 
• Gaps growing exponentially with time [FOSC] 

 
 
 
 

• Minimize communication to save time 

       
      

                                
    

   

Annual improvements 

Time_per_flop Bandwidth Latency 

Network 26% 15% 

DRAM 23% 5% 
59% 



Why Minimize Communication? (2/2) 

 

Source: John Shalf, LBL 



Why Minimize Communication? (2/2) 

 

Source: John Shalf, LBL 

Minimize communication to save energy 



“New Algorithm Improves Performance and Accuracy on Extreme-
Scale Computing Systems. On modern computer architectures, 
communication between processors takes longer than the 
performance of a floating point arithmetic operation by a given 
processor. ASCR researchers have developed a new method, 
derived from commonly used linear algebra methods, to minimize 
communications between processors and the memory 
hierarchy, by reformulating the communication patterns 
specified within the algorithm. This method has been 
implemented in the TRILINOS framework, a highly-regarded suite of 
software, which provides functionality for researchers around the 
world to solve large scale, complex multi-physics problems.” 
 

FY 2010 Congressional Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific 
Computing Research (ASCR), pages 65-67. 

President Obama cites Communication-Avoiding Algorithms in 
the FY 2012 Department of Energy Budget Request to Congress: 

CA-GMRES (Hoemmen, Mohiyuddin, Yelick, JD) 
“Tall-Skinny” QR (Grigori, Hoemmen, Langou,  JD) 



Obstacle to avoiding communication: 
Low “computational intensity” 

• Let f = #arithmetic operations in an algorithm 
• Let m = #words of data needed 
• Def: q = f/m = computational intensity 
• If q small, say q=1, so one op/word, then algorithm 

can’t run faster than memory speed 
• But if q large, so many ops/word, then algorithm can 

(potentially) fetch data, do many ops while in fast 
memory, only limited by (faster!) speed of arithmetic 

• We seek algorithms with high q 
– Still need to be clever to take advantage of high q 

    



DENSE LINEAR ALGEBRA MOTIF 

     



 Brief history of (Dense) Linear Algebra software (1/6) 

 
– Libraries like EISPACK (for eigenvalue problems) 

• Then the BLAS (1) were invented (1973-1977) 
– Standard library of 15 operations on vectors 

• Ex:  y = α·x + y  (“AXPY”) ,  dot product, etc 

– Goals 
• Common pattern to ease programming, efficiency, robustness 

– Used in libraries like LINPACK (for linear systems) 
• Source of the name “LINPACK Benchmark” (not the code!) 

– Why BLAS 1 ?  1 loop, do O(n1) ops on O(n1) data 
– Computational intensity  = q = 2n/3n = 2/3 for AXPY  

•  Very low! 

– BLAS1, and so LINPACK, limited by memory speed 
– Need something faster … 

• In the beginning was the do-loop… 

      



Brief history of (Dense) Linear Algebra software (2/6) 

• So the BLAS-2 were invented (1984-1986) 
– Standard library of 25 operations (mostly) on matrix/vector pairs 

• Ex:  y = α·A·x + β·y (“GEMV”),   A = A + α·x·yT  (“GER”),  y = T-1·x (“TRSV”) 

– Why BLAS 2 ?  2 nested loops, do O(n2) ops on O(n2) data 
– But  q = computational intensity still just ~ (2n2)/(n2) =  2 

• Was OK for vector machines, but not for machine with caches,                     
since q still just a small constant 

      



Brief history of (Dense) Linear Algebra software (3/6) 

• The next step: BLAS-3 (1987-1988) 
– Standard library of 9 operations (mostly) on matrix/matrix pairs 

• Ex: C = α·A·B + β·C (“GEMM”),  C = α·A·AT + β·C (“SYRK”) ,  C = T-1·B (“TRSM”) 

– Why BLAS 3 ?  3 nested loops, do O(n3) ops on O(n2) data 
– So computational intensity q=(2n3)/(4n2) = n/2 – big at last! 

• Tuning opportunities machines with caches, other mem. hierarchy levels 

• How much faster can BLAS 3 go? 

      



Matrix-multiply, optimized several ways 

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops 

Reference 
Implementation; 
Full compiler opt. 

Peak = 330 MFlops. 

Optimized 
Implementations: 
Vendor (Sun) and 
Autotuned (PHiPAC) 

300 

200 

100 

0 

 
     



Faster Matmul C=A*B by “Blocking” 

• Replace usual 3 nested loops …  
 
 
 

• … by “blocked” version 

    

for I=1 to n/b 
   for J=1 to n/b 
      for K=1 to n/b 
        C[I,J] =  C[I,J] + A[I,K]*B[K,J] 
 
Each C[I,J], A[I,K], B[K,J] is b x b 
and all 3 blocks fit in fast memory 

for i=1 to n 
   for j=1 to n 
      for k=1 to n 
        C(i,j) =  C(i,j) + A(i,k)*B(k,j) 
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Lower bounds on Communication for Matmul 

• Assume  sequential n3 algorithm for C=A*B  
– i.e. not Strassen-like 

• Assume A, B and C fit in slow memory, but not in fast 
memory of size M 

• Thm: Lower bound on  #words_moved to/from slow 
memory, no matter the order n3 operations are done,               
= Ω (n3 / M1/2 )        [Hong & Kung (1981)]  

• Attained by “blocked” algorithm  
– Some other algorithms attain it too 
– Widely implemented in libraries (eg Intel MKL) 

17 

     
         

               
                   

        
    

    
 



How hard is hand-tuning, anyway? 

     

• Results of 22 student teams trying to tune matrix-multiply, in CS267 Spr09 
• Students given “blocked” code to start with 

• Still hard to get close to vendor tuned performance (ACML) 
• For more discussion, see www.cs.berkeley.edu/~volkov/cs267.sp09/hw1/results/ 
• Naïve matmul: just 2% of peak 

http://www.cs.berkeley.edu/~volkov/cs267.sp09/hw1/results/


How hard is hand-tuning, anyway? 

     



     

What part of the Matmul Search Space Looks Like 

A 2-D slice of a 3-D register-tile search space. The dark blue region was pruned. 
(Platform: Sun Ultra-IIi, 333 MHz, 667 Mflop/s peak, Sun cc v5.0 compiler) 

Number of rows in register block 



     

Autotuning DGEMM with ATLAS (n = 500) 

• ATLAS is faster than all other portable BLAS implementations and it is 
comparable with machine-specific libraries provided by the vendor. 

• ATLAS written by C. Whaley, inspired by PHiPAC, by Asanovic, Bilmes,Chin,D.  
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Brief history of (Dense) Linear Algebra software (4/6) 

• LAPACK – “Linear Algebra PACKage” - uses BLAS-3 (1989 – now) 
– Ex: Obvious way to express Gaussian Elimination  (GE) is adding multiples 

of each row to other rows – BLAS-1 
• Need to reorganize GE (and everything else) to use BLAS-3 instead 

– Contents of current LAPACK (summary) 
• Algorithms we can turn into (nearly) 100% BLAS 3 for large n 

– Linear Systems: solve Ax=b for x 
– Least Squares: choose x to minimize √Σi ri

2 where r=Ax-b 
• Algorithms  that are only up to ~50% BLAS 3, rest BLAS 1 & 2 

– “Eigenproblems”: Find λ and x where Ax = λ x 
– Singular Value Decomposition (SVD): ATAx=σ2x  

• Error bounds for everything 
• Lots of variants depending on A’s structure  (banded, A=AT, etc) 

– Widely used (list later) 
– All at www.netlib.org/lapack 
 

 

   

  

http://www.netlib.org/lapack


Brief history of (Dense) Linear Algebra software (5/6) 

• Is LAPACK parallel? 
– Only if the BLAS are parallel (possible in shared 

memory) 

• ScaLAPACK – “Scalable LAPACK” (1995 – now) 
– For distributed memory – uses MPI 
– More complex data structures, algorithms than LAPACK 

• Only subset of LAPACK’s functionality available 
• Work in progress (contributions welcome!) 

– All at www.netlib.org/scalapack 

      

http://www.netlib.org/scalapack


Success Stories for Sca/LAPACK 

Cosmic Microwave Background 
Analysis, BOOMERanG collaboration, 

MADCAP code (Apr. 27, 2000). 

ScaLAPACK 

• Widely used 
– Adopted by Mathworks, Cray, Fujitsu, 

HP, IBM, IMSL, Intel, NAG, NEC, SGI, … 
– >157M web hits(in 2012, 56M in 2006) 

@ Netlib (incl. CLAPACK, LAPACK95) 

• New science discovered through the 
solution of dense matrix systems 
– Nature article on the flat universe used 

ScaLAPACK 
– 1998 Gordon Bell Prize 
– www.nersc.gov/news/reports/newNER

SCresults050703.pdf 

• Currently funded to improve, 
update, maintain Sca/LAPACK 

      

 

http://www.nersc.gov/news/reports/newNERSCresults050703.pdf
http://www.nersc.gov/news/reports/newNERSCresults050703.pdf


Lower bound for all “n3-like” linear algebra 

• Holds for 
– Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, … 
– Some whole programs (sequences of  these operations, 

no matter how individual ops are interleaved, eg Ak) 
– Dense and sparse matrices (where #flops  <<  n3 ) 
– Sequential and parallel algorithms 
– Some graph-theoretic algorithms (eg Floyd-Warshall) 

 

•  Let M = “fast” memory size (per processor) 
 

#words_moved (per processor) = Ω(#flops (per processor) / M1/2 ) 
 

#messages_sent (per processor) = Ω(#flops (per processor) / M3/2 ) 
 

•  Parallel case: assume either load or memory balanced 
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SIAM SIAG/LA Best Paper 2012 



Can we attain these lower bounds? 

• Do conventional dense algorithms as implemented 
in  LAPACK and ScaLAPACK attain these bounds? 
– Mostly not  

• If not, are there other algorithms that do? 
– Yes, for much of dense linear algebra 
– New algorithms, with new numerical properties,               

new ways to encode answers,  new data structures                              
– Not just loop transformations (need those too!) 

• Only a few sparse algorithms so far 
• Lots of work in progress 

 



Example: “2.5D” Matrix multiply 
Lower bound decreases as M increases, 

even beyond minimum needed (3n2/p) – attainable! 
 



2.5D Matrix Multiply Timing Breakdown 
c = 16 copies 

Distinguished Paper Award, EuroPar’11 (Solomonik, D.) 
(SC’11 paper by Solomonik, Bhatele, D.) 



TSQR: QR of a Tall, Skinny matrix 
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TSQR: QR of a Tall, Skinny matrix 
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Output =  { Q00, Q10, Q20, Q30, Q01, Q11, Q02, R02 } 



TSQR: An Architecture-Dependent Algorithm 

W =  

W0 
W1 
W2 
W3 

R00 
R10 
R20 
R30 

R01 

R11 

R02 
Parallel: 

W =  

W0 
W1 
W2 
W3 

R01 R02 

R00 

R03 

Sequential: 

W =  

W0 
W1 
W2 
W3 

R00 
R01 

R01 

R11 
R02 

R11 

R03 

Dual Core: 

Can choose reduction tree dynamically 
Multicore / Multisocket / Multirack / Multisite / Out-of-core:  ? 



TSQR Performance Results 
• Parallel 

– Intel Clovertown 
– Up to 8x speedup (8 core, dual socket, 10M x 10) 

– Pentium III cluster, Dolphin Interconnect, MPICH 
• Up to 6.7x speedup (16 procs, 100K x 200) 

– BlueGene/L 
• Up to 4x speedup (32 procs, 1M x 50) 

– Tesla C 2050 / Fermi 
• Up to 13x (110,592 x 100) 

– Grid – 4x on 4 cities vs 1 city (Dongarra, Langou et al) 
– Cloud (Gleich, Benson) 

• Sequential   
– “Infinite speedup” for out-of-Core on PowerPC laptop 

• As little as 2x slowdown vs (predicted) infinite DRAM 
• LAPACK with virtual memory never finished 

• Joint work with Grigori, Hoemmen, Langou, Anderson, Ballard, Keutzer, others 

            
    



Brief history/future of (Dense) Linear Algebra software (6/6) 

• Communication-Avoiding for everything (open problems…) 
– Extensions to Strassen-like algorithms 

• Extensions for multicore 
– PLASMA – Parallel Linear Algebra for Scalable Multicore Architectures 

• Dynamically schedule tasks into which algorithm is decomposed, to 
minimize synchronization, keep all processors busy 

• Release 2.4.5 at icl.cs.utk.edu/plasma/ 

• Extensions for heterogeneous architectures, eg CPU + GPU 
– “Benchmarking GPUs to tune Dense Linear Algebra” 

• Best Student Paper Prize at SC08 (Vasily Volkov) 
• Paper, slides and code at www.cs.berkeley.edu/~volkov 

– Lower, matching upper bounds (tech report at bebop.cs.berkeley.edu) 
– MAGMA – Matrix Algebra on GPU and Multicore Architectures 

• Release 1.2.1 at icl.cs.utk.edu/magma/ 

• How much code generation can we automate? 
– MAGMA , and FLAME (www.cs.utexas.edu/users/flame/) 

      

http://www.cs.berkeley.edu/~volkov
http://www.cs.utexas.edu/users/flame/


SPARSE LINEAR ALGEBRA MOTIF 

     



Sparse Matrix Computations 
• Similar problems to dense matrices 

– Ax=b, Least squares, Ax = λx, SVD, … 

• But different algorithms! 
– Exploit  structure: only store, work on nonzeros 
– Direct methods  

• LU, Cholesky for Ax=b, QR for Least squares 
• See crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf         

for  a survey of available serial and parallel sparse solvers 
• See crd.lbl.gov/~xiaoye/SuperLU/index.html  for  LU codes 

– Iterative methods – for Ax=b, least squares, eig, SVD 
• Use simplest operation: Sparse-Matrix-Vector-Multiply (SpMV) 
• Krylov Subspace Methods: find “best” solution in space 

spanned by vectors generated by SpMVs 

     

http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf
http://crd.lbl.gov/~xiaoye/SuperLU/index.html


Choosing a Krylov Subspace Method for Ax=b  

     

A symmetric? 

AT available?  A definite? 

Storage  
Expensive?  

A well- 
conditioned?   

A well- 
conditioned?  

Largest/smallest  
eigenvalues 

known?  

Try  
GMRES  

Try CGS,  
BiCGStab, 

or  
GMRES(k)  

Try  
QMR  

Try  
CG on  
normal 
eqns.  

Try  
MINRES 

or 
Nonsymm.  

method 

Try  
CG  

Try CG with 
Chebyshev 
acceleration  

No 

No 

No No Yes 
No 

Yes 

No Yes 

Yes Yes No 
Yes 

Yes 

• All depend on SpMV 
• See www.netlib.org/templates for Ax=b 
• See www.cs.ucdavis.edu/~bai/ET/contents.html for Ax=λx and SVD 

http://www.netlib.org/templates
http://www.cs.ucdavis.edu/~bai/ET/contents.html


Sparse Outline 

• Approaches to Automatic Performance Tuning 
• Results for sparse matrix kernels 

– Sparse Matrix Vector Multiplication (SpMV) 
– Sequential and Multicore results 

• OSKI = Optimized Sparse Kernel Interface 
– pOSKI = parallel OSKI 

• Tuning Entire Sparse Solvers 
– Avoiding Communication 

• What is a sparse matrix? 



Approaches to Automatic Performance Tuning  

• Goal: Let machine do hard work of writing fast code 
• Why is tuning dense BLAS “easy”? 

– Can do the tuning off-line: once per architecture, algorithm 
– Can take as much time as necessary (hours, a week…) 
– At run-time, algorithm choice may depend only on few parameters 

(matrix dimensions) 

• Can’t always do tuning off-line 
– Algorithm and implementation may strongly depend on data only known 

at run-time 
– Ex: Sparse matrix nonzero pattern determines both best data structure 

and implementation of Sparse-matrix-vector-multiplication (SpMV)  
– Part of search for best algorithm must be done (very quickly!) at run-time 

• Tuning FFTs and signal processing 
– Seems off-line, but maybe not, because of code size 
– www.spiral.net,   www.fftw.org  

http://www.spiral.net/
http://www.fftw.org/


Source: Accelerator Cavity Design Problem (Ko via Husbands) 



Linear Programming Matrix 

… 



A Sparse Matrix You Use Every Day 



Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)*x(j) 
 

for each row i 
 for k=ptr[i] to ptr[i+1] do 
  y[i] = y[i] + val[k]*x[ind[k]] 

SpMV with Compressed Sparse Row (CSR) Storage 

Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)*x(j) 
 

for each row i 
 for k=ptr[i] to ptr[i+1] do 
  y[i] = y[i] + val[k]*x[ind[k]] 

Only 2 flops per  
2 mem_refs: 
Limited by getting  
data from memory 



Example: The Difficulty of Tuning 

• n = 21200 
• nnz = 1.5 M 
• kernel: SpMV 

 
• Source: NASA 

structural 
analysis problem 



Example: The Difficulty of Tuning 

• n = 21200 
• nnz = 1.5 M 
• kernel: SpMV 

 
• Source: NASA 

structural analysis 
problem 

• 8x8 dense substructure: 
exploit this to limit 
#mem_refs 



Speedups on Itanium 2:  
The Need for Search 

Reference 

Best: 4x2 

Mflop/s 

Mflop/s 



Register Profile: Itanium 2 

190 Mflop/s 

1190 Mflop/s 



Register Profiles: IBM and Intel IA-
64 

Power3 - 17% Power4 - 16% 

Itanium 2 - 33% Itanium 1 - 8% 

252 Mflop/s 

122 Mflop/s 

820 Mflop/s 

459 Mflop/s 

247 Mflop/s 

107 Mflop/s 

1.2 Gflop/s 

190 Mflop/s 



Register Profiles: Sun and Intel x86 

 

Ultra 2i - 11% Ultra 3 - 5% 

Pentium III-M - 15% Pentium III - 21% 

72 Mflop/s 

35 Mflop/s 

90 Mflop/s 

50 Mflop/s 

108 Mflop/s 

42 Mflop/s 

122 Mflop/s 

58 Mflop/s 



Another example of tuning challenges 

• More complicated 
non-zero structure in 
general 
 

• N = 16614 
• NNZ = 1.1M 



Zoom in to top corner 

 

• More complicated 
non-zero structure 
in general 
 

• N = 16614 
• NNZ = 1.1M 

 



3x3 blocks look natural, but… 

• More complicated non-zero 
structure in general 

• Example: 3x3 blocking 
– Logical grid of 3x3 cells 

• But would lead to lots of 
“fill-in” 



Extra Work Can Improve Efficiency! 

• More complicated non-zero 
structure in general 

• Example: 3x3 blocking 
– Logical grid of 3x3 cells 
– Fill-in explicit zeros 
– Unroll 3x3 block multiplies 
– “Fill ratio” = 1.5 

• On Pentium III: 1.5x speedup! 
– Actual mflop rate               

1.52 = 2.25x higher 



Selecting Register Block Size r x c 
• Off-line benchmark 

– Precompute Mflops(r,c) using dense A for each r x c 
– Once per machine/architecture 

• Run-time “search” 
–  Sample A to estimate Fill(r,c) for each r x c 
– Control cost = O(s·nnz) by controlling fraction s ∈ [0,1] sampled 
– Control s automatically by computing statistical confidence intervals, by 

monitoring variance 

• Run-time heuristic model 
– Choose r, c to minimize time ~  Fill(r,c) / Mflops(r,c) 

• Cost of tuning 
– Lower bound: convert matrix in 5 to 40 unblocked SpMVs 
– Heuristic: 1 to 11 SpMVs 

• Tuning only useful when we do many SpMVs 
– Common case, eg in sparse solvers 



Accuracy of the Tuning Heuristics 
(1/4) 

NOTE: “Fair” flops used (ops on explicit zeros not counted as “work”) 
See p. 375 of Vuduc’s thesis for matrices 



Accuracy of the Tuning Heuristics 
(2/4) 

DGEMV 



Example: Bounds on Itanium 2 
Upper bound counts only 
compulsory memory traffic 

PAPI upper bound 
counts true traffic 



Summary of Other Sequential  
Performance Optimizations 

• Optimizations for SpMV 
– Register blocking (RB): up to 4x over CSR 
– Variable block splitting: 2.1x over CSR, 1.8x over RB 
– Diagonals: 2x over CSR 
– Reordering to create dense structure + splitting: 2x over CSR 
– Symmetry: 2.8x over CSR, 2.6x over RB 
– Cache blocking: 2.8x over CSR 
– Multiple vectors (SpMM): 7x over CSR 
– And combinations… 

• Sparse triangular solve 
– Hybrid sparse/dense data structure: 1.8x over CSR 

• Higher-level kernels 
– A·AT·x, AT·A·x: 4x over CSR, 1.8x over RB 
– A2·x: 2x over CSR, 1.5x over RB 
– [A·x, A2·x, A3·x, .. , Ak·x]  ….   more to say later 



Source: Accelerator Cavity Design Problem (Ko via Husbands) 

Can we reorder the 
rows and columns 
to create dense blocks, 
to accelerate SpMV? 



Post-RCM  (Breadth-first-search) Reordering 

Moving nonzeros nearer 
the diagonal should  
create dense block, but 
let’s zoom in and see… 



100x100 Submatrix Along Diagonal 

Here is the top 100x100 
submatrix before RCM 



Before: Green + Red 
After: Green + Blue 

“Microscopic” Effect of RCM Reordering 

Here is the top 100x100 
submatrix after RCM:  
red entries move to the 
blue locations.                           
More dense blocks, but 
could be better, so let’s 
try reordering again, 
using TSP (Travelling  
Saleman Problem) 



“Microscopic” Effect of Combined RCM+TSP Reordering 

Before: Green + Red 
After: Green + Blue 

Here is the top 100x100 
submatrix after RCM and 
TSP:  red entries move 
to the blue locations.                           
Lots of dense blocks,   
as desired! 
 
Speedups (using 
symmetry too): 
 
Itanium 2:  1.7x 
Pentium 4: 2.1x 
Power 4:    2.1x 
Ultra 3:       3.3x 
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Multicore SMPs Used for Tuning SpMV 

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown) 

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls) 
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Multicore SMPs Used for Tuning SpMV 

Intel Xeon E5345 (Clovertown) 

• Cache based 

• 8 Threads 

AMD Opteron 2356 (Barcelona) 

• Cache based 

• 8 Threads 
• NUMA 

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls) 

• Cache based • Local-Store based 

• 128 Threads (CMT) • 16 Threads 

• NUMA • NUMA 

• 75 GFlops • 74 GFlops 

• 19 GFlops • 29 Gflops (SPEs only) 

• 21/10 GB/s R/W BW • 21 GB/s R/W BW 

• 42/21 GB/s R/W BW • 51 GB/s R/W BW 
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Set of 14 test matrices 

• All bigger than the caches of our SMPs 

Dense 

Protein FEM / 
Spheres 

FEM / 
Cantilever 

Wind 
Tunnel 

FEM / 
Harbor QCD FEM / 

Ship Economics Epidemiology 

FEM / 
Accelerator Circuit webbase 

LP 

2K x 2K Dense matrix 
stored in sparse format 

Well Structured 
(sorted by nonzeros/row) 

Poorly Structured 
hodgepodge 

Extreme Aspect Ratio 
(linear programming) 
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SpMV Performance: Naive parallelization 

• Out-of-the box SpMV 
performance on a suite of 14 
matrices 

• Scalability isn’t great: 
      Compare to # threads 
          8      8 
      128    16 

Naïve Pthreads 

Naïve 



SpMV Performance: NUMA and Software Prefetching 

69 

 NUMA-aware allocation is 
essential on NUMA SMPs. 

 Explicit software prefetching 
can boost bandwidth and 
change cache replacement 
policies 

 
 used exhaustive search 



SpMV Performance: “Matrix Compression” 

70 

 Compression includes 
 register blocking 
 other formats 
 smaller indices 

 Use heuristic rather than 
search 
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SpMV Performance: cache and TLB blocking 

+Cache/LS/TLB Blocking 

+Matrix Compression 

+SW Prefetching 

+NUMA/Affinity 

Naïve Pthreads 

Naïve 
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SpMV Performance: Architecture specific optimizations 

 

+Cache/LS/TLB Blocking 

+Matrix Compression 

+SW Prefetching 

+NUMA/Affinity 

Naïve Pthreads 

Naïve 
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SpMV Performance: max speedup 

• Fully auto-tuned SpMV 
performance across the suite of 
matrices 

• Included SPE/local store 
optimized version 

• Why do some optimizations work 
better on some architectures? 

+Cache/LS/TLB Blocking 

+Matrix Compression 

+SW Prefetching 

+NUMA/Affinity 

Naïve Pthreads 

Naïve 

2.7x 4.0x 

2.9x 35x 



Optimized Sparse Kernel Interface  -  pOSKI 

• Provides sparse kernels automatically tuned for      user’s 
matrix & machine 
– BLAS-style functionality: SpMV, Ax & ATy 
– Hides complexity of run-time tuning 
 

• Faster than previous implementations 
– Up to 7.8x over reference serial implementation on Sandy Bridge E 
– Up to 4.5x over OSKI on Sandy Bridge E 
– Up to 2.1x over MKL on Nehalem 

 

• bebop.cs.berkeley.edu/poski 
 

• Ongoing work by the Berkeley Benchmarking and 
Optimization (BeBop) group 



Optimizations in pOSKI, so far 

• Fully automatic heuristics for 
– Sparse matrix-vector multiply (Ax, ATx) 

• Register-level blocking, Thread-level blocking 
• SIMD, software prefetching, software pipelining, loop unrolling 
• NUMA-aware allocations 

 
• “Plug-in” extensibility 

– Very advanced users may write their own heuristics, create new data 
structures/code variants and dynamically add them to the system 

 
• Other kernels just in OSKI so far 

– ATAx, Akx 
– A-1x : Sparse triangular solver (SpTS) 

 
• Other optimizations under development 

– Cache-level blocking, Reordering (RCM, TSP), variable block structure, index 
compressing, Symmetric storage, etc. 
 



How pOSKI Tunes (Overview) 

1. Build for 
Target Arch. 2. Benchmark 

Generated 
Code 

Variants 

Library Install-Time (offline) Application Run-Time 
Sample Dense Matrix 

(r,c) 
(r,c) = Register Block size 
(d) =  prefetching distance 
(d) =  SIMD implementation 

(r,c,d,imp,…) 

Benchmark 
Data 

& 
Selected  

Code Variants 

….. 

….. 2. Evaluate 
Models 

3. Select 
Data Struct. 

& Code 

2. Evaluate 
Models 

3. Select 
Data Struct. 

& Code 

User’s Matrix 

1. Partition Workload 
from program 

monitoring 

Empirical &  
Heuristic  

Search 

History 

User’s hints 

Submatrix 
thread Submatrix …. 

To user: Matrix handle for kernel calls 



How pOSKI Tunes (Overview) 

• At library build/install-time 
– Generate code variants 

• Code generator (Phyton) generates code variants for various implementations  
– Collect benchmark data 

• Measures and records speed of possible sparse data structure and code variants on 
target architecture 

– Select best code variants & benchmark data 
• prefetching distance, SIMD implementation 

– Installation process uses standard, portable GNU AutoTools 
• At run-time 

– Library “tunes” using heuristic models 
• Models analyze user’s matrix & benchmark data to choose optimized data 

structure and code 
• User may re-collect benchmark data with user’s sparse matrix (under development)  

– Non-trivial tuning cost: up to ~40 mat-vecs 
• Library limits the time it spends tuning based on estimated workload 

– provided by user or inferred by library 
• User may reduce cost by saving tuning results for application on future runs with 

same or similar matrix (under development) 



How to call pOSKI: Basic Usage 

• May gradually migrate existing apps 
– Step 1: “Wrap” existing data structures 
– Step 2: Make BLAS-like kernel calls 

int* ptr = …, *ind = …;  double* val = …; /* Matrix, in CSR format */ 
double* x = …, *y = …; /* Let x and y be two dense vectors */ 
 
 
 
 
 
 
 
 

/* Compute y = β·y + α·A·x, 500 times */ 
for( i = 0; i < 500; i++ ) 

 my_matmult( ptr, ind, val, α, x, β, y ); 



How to call pOSKI: Basic Usage 

• May gradually migrate existing apps 
– Step 1: “Wrap” existing data structures 
– Step 2: Make BLAS-like kernel calls 

int* ptr = …, *ind = …;  double* val = …; /* Matrix, in CSR format */ 
double* x = …, *y = …; /* Let x and y be two dense vectors */ 
/* Step 1: Create a default pOSKI thread object */ 
poski_threadarg_t *poski_thread = poski_InitThread(); 

/* Step 2: Create pOSKI wrappers around this data */ 
poski_mat_t A_tunable = poski_CreateMatCSR(ptr, ind, val, nrows, ncols, 

nnz, SHARE_INPUTMAT, poski_thread, NULL, …); 
poski_vec_t x_view = poski_CreateVec(x, ncols, UNIT_STRIDE, NULL); 
poski_vec_t y_view = poski_CreateVec(y, nrows, UNIT_STRIDE, NULL); 
 

/* Compute y = β·y + α·A·x, 500 times */ 
for( i = 0; i < 500; i++ ) 

 my_matmult( ptr, ind, val, α, x, β, y ); 



How to call pOSKI: Basic Usage 

• May gradually migrate existing apps 
– Step 1: “Wrap” existing data structures 
– Step 2: Make BLAS-like kernel calls 

int* ptr = …, *ind = …;  double* val = …; /* Matrix, in CSR format */ 
double* x = …, *y = …; /* Let x and y be two dense vectors */ 
/* Step 1: Create a default pOSKI thread object */ 
poski_threadarg_t *poski_thread = poski_InitThread(); 

/* Step 2: Create pOSKI wrappers around this data */ 
poski_mat_t A_tunable = poski_CreateMatCSR(ptr, ind, val, nrows, ncols, 

nnz, SHARE_INPUTMAT, poski_thread, NULL, …); 
poski_vec_t x_view = poski_CreateVec(x, ncols, UNIT_STRIDE, NULL); 
poski_vec_t y_view = poski_CreateVec(y, nrows, UNIT_STRIDE, NULL); 
 

/* Step 3: Compute y = β·y + α·A·x, 500 times */ 
for( i = 0; i < 500; i++ ) 

 poski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view); 



How to call pOSKI:  
Tune with Explicit Hints 

• User calls “tune” routine (optional) 
– May provide explicit tuning hints 

poski_mat_t A_tunable = poski_CreateMatCSR( … ); 
 /* … */ 

/* Tell pOSKI we will call SpMV 500 times (workload hint) */ 
poski_TuneHint_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view,500); 
/* Tell pOSKI we think the matrix has 8x8 blocks (structural hint) */ 
poski_TuneHint_Structure(A_tunable, HINT_SINGLE_BLOCKSIZE, 8, 8); 
 

/* Ask pOSKI to tune */ 
poski_TuneMat(A_tunable);  
 
for( i = 0; i < 500; i++ ) 

 poski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view); 



How to call pOSKI: Implicit Tuning 

• Ask library to infer workload (optional) 
– Library profiles all kernel calls 
– May periodically re-tune 

 poski_mat_t A_tunable = poski_CreateMatCSR( … ); 
 /* … */ 
 
 for( i = 0; i < 500; i++ ) { 
  poski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view); 
  poski_TuneMat(A_tunable); /* Ask pOSKI to tune */ 
 } 



Performance on Intel Sandy Bridge E 

4.8x 

3.2x 

4.5x 

2.9x 

4.1x 4.5x 

4.7x 

• Jaketown: i7-3960X @ 3.3 GHz 
• #Cores: 6 (2 threads per core), L3:15MB 
• pOSKI SpMV (Ax) with double precision float-point 
• MKL Sparse BLAS Level 2: mkl_dcsrmv() 



Avoiding Communication in Sparse Linear Algebra 

• Computational intensity of one SpMV ≤ 2, limits performance 
• k-steps of typical iterative solver for Ax=b or Ax=λx 

– Does  k  SpMVs with starting vector (eg  with b, if solving Ax=b) 
– Finds “best” solution among all linear combinations of these k+1 vectors 
– Many such “Krylov Subspace Methods” 

• Conjugate Gradients, GMRES, Lanczos, Arnoldi, …  
• Goal: minimize communication in Krylov Subspace Methods 

– Assume matrix “well-partitioned,” with modest surface-to-volume ratio 
– Parallel implementation 

• Conventional: O(k log p) messages, because k calls to SpMV 
• New: O(log p) messages - optimal 

– Serial implementation 
• Conventional: O(k) moves of data from slow to fast memory 
• New: O(1) moves of data – optimal 

• Lots of speed up possible (modeled and measured) 
– Price: some redundant computation, numerical stability issues 
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Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]  
 
 
 
 
 

• Example: A tridiagonal, n=32, k=3 
• Works for any “well-partitioned” A 
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Step 1 
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Step 1 Step  2 
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Step 1 Step  2 Step  3 
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• Example: A tridiagonal, n=32, k=3 

Step 1 Step  2 Step  3 Step  4 



1   2   3   4 …  … 32 

x 

A·x 

A2·x 

A3·x 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  
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• Example: A tridiagonal, n=32, k=3 
• Each processor communicates once with neighbors  

Proc 1 Proc  2 Proc  3 Proc  4 
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Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
• Parallel Algorithm  

 
 
 

 
• Example: A tridiagonal, n=32, k=3 
• Each processor works on (overlapping) trapezoid 

Proc 1 Proc  2 Proc  3 Proc  4 



Same idea works for general sparse matrices 

Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

Partitioning by rows  
 Graph partitioning 
  
Processing left to right   
     Traveling Salesman Problem 



What about multicore? 
• Two kinds of communication to minimize 

– Between processors on the chip 
– Between on-chip cache and off-chip DRAM 

• Use hybrid of both techniques described so far 
– Use parallel optimization so each core can work 

independently 
– Use sequential optimization to minimize off-chip 

DRAM traffic of each core 

     



Speedups on Intel Clovertown (8 core) 
Test matrices include stencils and practical matrices 

See  SC09 paper on bebop.cs.berkeley.edu for details 

 
    



Minimizing Communication of GMRES 
Classical GMRES for Ax=b 
 
  for i=1 to k 
     w = A * v(i-1) 
     MGS(w, v(0),…,v(i-1)) 
         … Modified Gram-Schmidt 
         …  to make w orthogonal 
     update v(i), H 
         … H = matrix of coeffs  
         …    from MGS 
  endfor 
  solve LSQ problem with H for x 
 
Communication cost =  
    k copies of A, vectors from  
    slow to fast memory 

Communication-Avoiding GMRES, ver. 1 
 
   W = [ v, Av, A2v, … , Akv ] 
   [Q,R] = TSQR(W)   
        …  “Tall Skinny QR” 
        … new optimal QR discussed before 
   Build H from R  
   solve LSQ problem with H for x 
 
 
 
 
 
Communication cost =  
    O(1) copy of A, vectors from 
     slow to fast memory 

Let’s confirm that we still get the right answer … 
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Right answer (converges) 

Oops, doesn’t converge 



Minimizing Communication of GMRES 
(and getting the right answer) 

Communication-Avoiding GMRES, ver. 2 
 
   W = [ v, p1(A)v, p2(A)v, … , pk(A)v ] 
        … where pi(A)v is a degree-i polynomial in A multiplied by v 
        … polynomials chosen to keep vectors independent 
   [Q,R] = TSQR(W)   
        …  “Tall Skinny QR” 
        … new optimal QR discussed before 
   Build H from R 
        … slightly different R from before 
   solve LSQ problem with H for x 
 
 
Communication cost still optimal:  
    O(1) copy of A, vectors from 
     slow to fast memory 
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Right answer (converges) 

Oops, doesn’t converge 

Converges again! 



Speed ups on 8-core Clovertown 
CA-GMRES = Communication-Avoiding GMRES 

Paper by Mohiyuddin, Hoemmen, D. in Supercomputing09 



Summary of what is known, open 

• GMRES 
– Can independently choose k to optimize speed, restart length r to 

optimize convergence 
– Need to “co-tune” Akx kernel and TSQR 
– Know how to use more stable polynomial bases 
– Proven speedups 

• Can similarly reorganize other Krylov methods 
– Arnoldi and Lanczos, for Ax = λx and for Ax = λMx  
– Conjugate Gradients (CG), for Ax = b 
– Biconjugate Gradients (BiCG), CG Squared (CGS), BiCGStab for Ax=b   
– Other Krylov methods? 

• Preconditioning – how to handle MAx = Mb 
 

     



What is a sparse matrix? 

• How much infrastructure (for code creation, 
tuning or interfaces) can we reuse for all these 
cases? 106 



Sparse Conclusions 
• Fast code must minimize communication 

– Especially for sparse matrix computations because communication 
dominates 

• Generating fast code for a single SpMV 
– Design space of possible algorithms must be searched at run-time, 

when sparse matrix available 
– Design space should be searched automatically 

• Biggest speedups from minimizing communication in an 
entire sparse solver 
– Many more opportunities to minimize communication in multiple 

SpMVs than in one 
– Requires transforming entire algorithm 
– Lots of open problems  

• For more information, see bebop.cs.berkeley.edu 



STRUCTURED GRID MOTIF 

     

Source: Sam Williams 



Structured Grids  
Finite Difference Operators 

• Applying the finite difference method to PDEs on structured grids produces stencil operators 
that must be applied to all points in the discretized grid. 

• Consider the 7-point Laplacian Operator 
• Challenged by bandwidth, temporal reuse, efficient SIMD, etc…  
 but trivial to (correctly) parallelize 
• most optimizations can be independently implemented,  
 (but not performance independent) 
• core (cache) blocking and cache bypass were clearly integral to performance 

109 
+Thread 
Blocking +SW Prefetch +Register 

Blocking 
+Core 
Blocking 

+NUMA & 
Affinity Naïve +Cache 

Bypass 
+Array 
Padding 

+2nd Pass in 
Greedy 
Search 

y+1 

y-1 

x-1 

z-1 

z+1 

x+1 x,y,z 



Structured Grids  
Lattice Boltzmann Methods 

• LBMHD simulates charged plasmas in a magnetic field (MHD) via Lattice Boltzmann Method 
(LBM) applied to CFD and Maxwell’s equations. 

• To monitor density, momentum, and magnetic field, it requires maintaining two “velocity” 
distributions 

– 27 (scalar) element velocity distribution for momentum 
– 15 (Cartesian) element velocity distribution for magnetic field 
– = 632 bytes / grid point / time step  

• Jacobi-like time evolution requires ~1300 flops and ~1200 bytes of memory traffic 
 

 

momentum distribution 

14 

4 

13 

16 

5 

8 

9 

21 

12 

+Y 

2 

25 

1 

3 

24 

23 

22 

26 

0 

18 

6 

17 

19 

7 

10 

11 

20 

15 
+Z 

+X 

magnetic distribution 

14 

13 

16 

21 

12 

25 

24 

23 

22 

26 

18 

17 

19 

20 

15 

+Y 

+Z 

+X 

macroscopic variables 

+Y 

+Z 

+X 



Structured Grids  
Lattice Boltzmann Methods 

 

 Challenged by: 
 The higher flop:byte ratio of ~1.0 is still bandwidth-limiting 
 TLB locality (touch 150 pages per lattice update) 
 cache associativity (150 disjoint lines) 
 efficient SIMDization  

 easy to (correctly) parallelize 
 explicit SIMDization & SW prefetch are dependent on unrolling 
 Ultimately, 2 of 3 machines are bandwidth-limited 

*collision() only  

+Explicit 
SIMDization +SW Prefetch +Unrolling +Vectorization +Padding Reference 

+NUMA 
+small 
pages 



Structured Grids  
Lattice Boltzmann Methods 

 

• Distributed Memory & Hybrid 
• MPI, MPI+pthreads, MPI+OpenMP 
 (SPMD, SPMD2, SPMD+Fork/Join) 

 
• Observe that for this large problem, 

auto-tuning flat MPI delivered 
significant boosts (2.5x) 
 

• Extending auto-tuning to include the 
domain decomposition and balance 
between threads and processes 
provided an extra 17% 
 

• 2 processes with 2 threads was best 
 (true for Pthreads and OpenMP) 



DELIVERING AUTOTUNING WITH 
SEJITS 

     

Source: Shoaib Kamil 



What is SEJITS? 

• Goal: Let non-expert programmers quickly 
write their algorithms in an easy-to-use 
language, but still get high performance  
– First example: Python 

• By using common “patterns” to write 
algorithms, and hints about tuning 
opportunities, enable system to autotune 

• SEJITS = Selective Embedded Just-in-time 
Specialization 
 8/21/2009 James Demmel 114 



.py 

OS/HW 

f() h() 

Specializer 

.c 

P
LL

 In
te

rp
 
Productivity app 

.so 

cc/ld 

$ 

Delivering Autotuning via SEJITS 

Selective 

Embedded 

JIT 

SEJITS 
Specialization 

Several examples exist now: 
    Structured Grids/Stencils 
    CA-Conjugate Gradient 
    Tuned SpMV over other 
       semirings 



Summary 

• “Design spaces” for algorithms and 
implementations are large and growing 

• Finding the best algorithm/implementation by 
hand is hard and getting harder 

• Ideally, we would have a database of 
“techniques” that would grow over time, and 
be searched automatically whenever a new 
input and/or machine comes along 

• Lots of work to do… 
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