
PARLab Parallel Boot Camp

Computational Patterns
and Autotuning

Jim Demmel

EECS and Mathematics
University of California, Berkeley

PARLab Parallel Boot Camp

Outline
• Productive parallel computing depends on recognizing and

exploiting useful patterns
• Computational (7 Motifs) and Structural

• Simplest case: use “best” existing highly tuned implementation
• Best: Fastest? Most accurate? Fewest keystrokes?

• Optimizing (some of) the 7 Motifs
• To minimize time or energy, minimize communication (moving data)

• Between levels of the memory hierarchy
• Between processors over a network

• Autotuning to explore large design spaces
• Too hard (tedious) to write by hand, let machine do it

• SEJITS – how to deliver autotuning to more programmers
• For more details, see

• CS267: www.cs.berkeley.edu/~demmel/cs267_Spr12
• 10-hour short course: issnla2010.ba.cnr.it/Courses.htm
• Papers at bebop.cs.berkeley.edu, parlab.eecs.berkeley.edu

“7 Motifs” of High Performance Computing

• Phil Colella (LBL) identified 7 kernels of which most
simulation and data-analysis programs are composed:

1. Dense Linear Algebra
• Ex: Solve Ax=b or Ax = λx where A is a dense matrix

2. Sparse Linear Algebra
• Ex: Solve Ax=b or Ax = λx where A is a sparse matrix (mostly zero)

3. Operations on Structured Grids
• Ex: Anew(i,j) = 4*A(i,j) – A(i-1,j) – A(i+1,j) – A(i,j-1) – A(i,j+1)

4. Operations on Unstructured Grids
• Ex: Similar, but list of neighbors varies from entry to entry

5. Spectral Methods
• Ex: Fast Fourier Transform (FFT)

6. Particle Methods
• Ex: Compute electrostatic forces on n particles

7. Monte Carlo
• Ex: Many independent simulations using different inputs

“7 Motifs” of High Performance Computing

• Phil Colella (LBL) identified 7 kernels of which most
simulation and data-analysis programs are composed:

1. Dense Linear Algebra
• Ex: Solve Ax=b or Ax = λx where A is a dense matrix

2. Sparse Linear Algebra
• Ex: Solve Ax=b or Ax = λx where A is a sparse matrix (mostly zero)

3. Operations on Structured Grids
• Ex: Anew(i,j) = 4*A(i,j) – A(i-1,j) – A(i+1,j) – A(i,j-1) – A(i,j+1)

4. Operations on Unstructured Grids
• Ex: Similar, but list of neighbors varies from entry to entry

5. Spectral Methods
• Ex: Fast Fourier Transform (FFT)

6. Particle Methods
• Ex: Compute electrostatic forces on n particles

7. Monte Carlo
• Ex: Many independent simulations using different inputs

Organizing Linear Algebra Motifs -
in books and on-line

www.netlib.org/lapack www.netlib.org/scalapack

www.cs.utk.edu/~dongarra/etemplates www.netlib.org/templates

gams.nist.gov

Why Minimize Communication? (1/2)
• Running time of an algorithm is sum of 3 terms:

– # flops * time_per_flop
– # words moved / bandwidth
– # messages * latency

6

communication

• Time_per_flop << 1/ bandwidth << latency
• Gaps growing exponentially with time [FOSC]

• Minimize communication to save time

Annual improvements

Time_per_flop Bandwidth Latency

Network 26% 15%

DRAM 23% 5%
59%

Why Minimize Communication? (2/2)

Source: John Shalf, LBL

Why Minimize Communication? (2/2)

Source: John Shalf, LBL

Minimize communication to save energy

“New Algorithm Improves Performance and Accuracy on Extreme-
Scale Computing Systems. On modern computer architectures,
communication between processors takes longer than the
performance of a floating point arithmetic operation by a given
processor. ASCR researchers have developed a new method,
derived from commonly used linear algebra methods, to minimize
communications between processors and the memory
hierarchy, by reformulating the communication patterns
specified within the algorithm. This method has been
implemented in the TRILINOS framework, a highly-regarded suite of
software, which provides functionality for researchers around the
world to solve large scale, complex multi-physics problems.”

FY 2010 Congressional Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific
Computing Research (ASCR), pages 65-67.

President Obama cites Communication-Avoiding Algorithms in
the FY 2012 Department of Energy Budget Request to Congress:

CA-GMRES (Hoemmen, Mohiyuddin, Yelick, JD)
“Tall-Skinny” QR (Grigori, Hoemmen, Langou, JD)

Obstacle to avoiding communication:
Low “computational intensity”

• Let f = #arithmetic operations in an algorithm
• Let m = #words of data needed
• Def: q = f/m = computational intensity
• If q small, say q=1, so one op/word, then algorithm

can’t run faster than memory speed
• But if q large, so many ops/word, then algorithm can

(potentially) fetch data, do many ops while in fast
memory, only limited by (faster!) speed of arithmetic

• We seek algorithms with high q
– Still need to be clever to take advantage of high q

DENSE LINEAR ALGEBRA MOTIF

 Brief history of (Dense) Linear Algebra software (1/6)

– Libraries like EISPACK (for eigenvalue problems)

• Then the BLAS (1) were invented (1973-1977)
– Standard library of 15 operations on vectors

• Ex: y = α·x + y (“AXPY”) , dot product, etc

– Goals
• Common pattern to ease programming, efficiency, robustness

– Used in libraries like LINPACK (for linear systems)
• Source of the name “LINPACK Benchmark” (not the code!)

– Why BLAS 1 ? 1 loop, do O(n1) ops on O(n1) data
– Computational intensity = q = 2n/3n = 2/3 for AXPY

• Very low!

– BLAS1, and so LINPACK, limited by memory speed
– Need something faster …

• In the beginning was the do-loop…

Brief history of (Dense) Linear Algebra software (2/6)

• So the BLAS-2 were invented (1984-1986)
– Standard library of 25 operations (mostly) on matrix/vector pairs

• Ex: y = α·A·x + β·y (“GEMV”), A = A + α·x·yT (“GER”), y = T-1·x (“TRSV”)

– Why BLAS 2 ? 2 nested loops, do O(n2) ops on O(n2) data
– But q = computational intensity still just ~ (2n2)/(n2) = 2

• Was OK for vector machines, but not for machine with caches,
since q still just a small constant

Brief history of (Dense) Linear Algebra software (3/6)

• The next step: BLAS-3 (1987-1988)
– Standard library of 9 operations (mostly) on matrix/matrix pairs

• Ex: C = α·A·B + β·C (“GEMM”), C = α·A·AT + β·C (“SYRK”) , C = T-1·B (“TRSM”)

– Why BLAS 3 ? 3 nested loops, do O(n3) ops on O(n2) data
– So computational intensity q=(2n3)/(4n2) = n/2 – big at last!

• Tuning opportunities machines with caches, other mem. hierarchy levels

• How much faster can BLAS 3 go?

Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

Reference
Implementation;
Full compiler opt.

Peak = 330 MFlops.

Optimized
Implementations:
Vendor (Sun) and
Autotuned (PHiPAC)

300

200

100

0

Faster Matmul C=A*B by “Blocking”

• Replace usual 3 nested loops …

• … by “blocked” version

for I=1 to n/b
 for J=1 to n/b
 for K=1 to n/b
 C[I,J] = C[I,J] + A[I,K]*B[K,J]

Each C[I,J], A[I,K], B[K,J] is b x b
and all 3 blocks fit in fast memory

for i=1 to n
 for j=1 to n
 for k=1 to n
 C(i,j) = C(i,j) + A(i,k)*B(k,j)

i

j

=

i

j

I

J

=

I

J

C(i,j)

C[I,J]

*

* B
(k

,j)
 A(i,k)

A[I,K]

B
[K

,J
]

Lower bounds on Communication for Matmul

• Assume sequential n3 algorithm for C=A*B
– i.e. not Strassen-like

• Assume A, B and C fit in slow memory, but not in fast
memory of size M

• Thm: Lower bound on #words_moved to/from slow
memory, no matter the order n3 operations are done,
= Ω (n3 / M1/2) [Hong & Kung (1981)]

• Attained by “blocked” algorithm
– Some other algorithms attain it too
– Widely implemented in libraries (eg Intel MKL)

17

How hard is hand-tuning, anyway?

• Results of 22 student teams trying to tune matrix-multiply, in CS267 Spr09
• Students given “blocked” code to start with

• Still hard to get close to vendor tuned performance (ACML)
• For more discussion, see www.cs.berkeley.edu/~volkov/cs267.sp09/hw1/results/
• Naïve matmul: just 2% of peak

http://www.cs.berkeley.edu/~volkov/cs267.sp09/hw1/results/

How hard is hand-tuning, anyway?

What part of the Matmul Search Space Looks Like

A 2-D slice of a 3-D register-tile search space. The dark blue region was pruned.
(Platform: Sun Ultra-IIi, 333 MHz, 667 Mflop/s peak, Sun cc v5.0 compiler)

Number of rows in register block

Autotuning DGEMM with ATLAS (n = 500)

• ATLAS is faster than all other portable BLAS implementations and it is
comparable with machine-specific libraries provided by the vendor.

• ATLAS written by C. Whaley, inspired by PHiPAC, by Asanovic, Bilmes,Chin,D.

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

AMD Athlon-6
00

DEC ev
56

-53
3

DEC ev
6-5

00

HP90
00

/73
5/1

35

IBM PPC60
4-1

12

IBM Power2
-16

0

IBM Power3
-20

0

Pen
tiu

m Pro-20
0

Pen
tiu

m II-
26

6

Pen
tiu

m III
-55

0

SGI R
10

00
0ip

28
-20

0

SGI R
12

00
0ip

30
-27

0

Sun
 Ultra

Sparc
2-2

00

Architectures

M
FL

O
PS

Vendor BLAS
ATLAS BLAS
F77 BLAS

Source: Jack Dongarra

Brief history of (Dense) Linear Algebra software (4/6)

• LAPACK – “Linear Algebra PACKage” - uses BLAS-3 (1989 – now)
– Ex: Obvious way to express Gaussian Elimination (GE) is adding multiples

of each row to other rows – BLAS-1
• Need to reorganize GE (and everything else) to use BLAS-3 instead

– Contents of current LAPACK (summary)
• Algorithms we can turn into (nearly) 100% BLAS 3 for large n

– Linear Systems: solve Ax=b for x
– Least Squares: choose x to minimize √Σi ri

2 where r=Ax-b
• Algorithms that are only up to ~50% BLAS 3, rest BLAS 1 & 2

– “Eigenproblems”: Find λ and x where Ax = λ x
– Singular Value Decomposition (SVD): ATAx=σ2x

• Error bounds for everything
• Lots of variants depending on A’s structure (banded, A=AT, etc)

– Widely used (list later)
– All at www.netlib.org/lapack

http://www.netlib.org/lapack

Brief history of (Dense) Linear Algebra software (5/6)

• Is LAPACK parallel?
– Only if the BLAS are parallel (possible in shared

memory)

• ScaLAPACK – “Scalable LAPACK” (1995 – now)
– For distributed memory – uses MPI
– More complex data structures, algorithms than LAPACK

• Only subset of LAPACK’s functionality available
• Work in progress (contributions welcome!)

– All at www.netlib.org/scalapack

http://www.netlib.org/scalapack

Success Stories for Sca/LAPACK

Cosmic Microwave Background
Analysis, BOOMERanG collaboration,

MADCAP code (Apr. 27, 2000).

ScaLAPACK

• Widely used
– Adopted by Mathworks, Cray, Fujitsu,

HP, IBM, IMSL, Intel, NAG, NEC, SGI, …
– >157M web hits(in 2012, 56M in 2006)

@ Netlib (incl. CLAPACK, LAPACK95)

• New science discovered through the
solution of dense matrix systems
– Nature article on the flat universe used

ScaLAPACK
– 1998 Gordon Bell Prize
– www.nersc.gov/news/reports/newNER

SCresults050703.pdf

• Currently funded to improve,
update, maintain Sca/LAPACK

http://www.nersc.gov/news/reports/newNERSCresults050703.pdf
http://www.nersc.gov/news/reports/newNERSCresults050703.pdf

Lower bound for all “n3-like” linear algebra

• Holds for
– Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, …
– Some whole programs (sequences of these operations,

no matter how individual ops are interleaved, eg Ak)
– Dense and sparse matrices (where #flops << n3)
– Sequential and parallel algorithms
– Some graph-theoretic algorithms (eg Floyd-Warshall)

• Let M = “fast” memory size (per processor)

#words_moved (per processor) = Ω(#flops (per processor) / M1/2)

#messages_sent (per processor) = Ω(#flops (per processor) / M3/2)

• Parallel case: assume either load or memory balanced

Lower bound for all “n3-like” linear algebra

• Holds for
– Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, …
– Some whole programs (sequences of these operations,

no matter how individual ops are interleaved, eg Ak)
– Dense and sparse matrices (where #flops << n3)
– Sequential and parallel algorithms
– Some graph-theoretic algorithms (eg Floyd-Warshall)

• Let M = “fast” memory size (per processor)

#words_moved (per processor) = Ω(#flops (per processor) / M1/2)

#messages_sent ≥ #words_moved / largest_message_size

• Parallel case: assume either load or memory balanced

Lower bound for all “n3-like” linear algebra

• Holds for
– Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, …
– Some whole programs (sequences of these operations,

no matter how individual ops are interleaved, eg Ak)
– Dense and sparse matrices (where #flops << n3)
– Sequential and parallel algorithms
– Some graph-theoretic algorithms (eg Floyd-Warshall)

• Let M = “fast” memory size (per processor)

#words_moved (per processor) = Ω(#flops (per processor) / M1/2)

#messages_sent (per processor) = Ω(#flops (per processor) / M3/2)

• Parallel case: assume either load or memory balanced

SIAM SIAG/LA Best Paper 2012

Can we attain these lower bounds?

• Do conventional dense algorithms as implemented
in LAPACK and ScaLAPACK attain these bounds?
– Mostly not

• If not, are there other algorithms that do?
– Yes, for much of dense linear algebra
– New algorithms, with new numerical properties,

new ways to encode answers, new data structures
– Not just loop transformations (need those too!)

• Only a few sparse algorithms so far
• Lots of work in progress

Example: “2.5D” Matrix multiply
Lower bound decreases as M increases,

even beyond minimum needed (3n2/p) – attainable!

2.5D Matrix Multiply Timing Breakdown
c = 16 copies

Distinguished Paper Award, EuroPar’11 (Solomonik, D.)
(SC’11 paper by Solomonik, Bhatele, D.)

TSQR: QR of a Tall, Skinny matrix

W =

Q00 R00
Q10 R10
Q20 R20
Q30 R30

W0
W1
W2
W3

Q00
 Q10
 Q20
 Q30

= = .

R00
R10
R20
R30

R00
R10
R20
R30

=
Q01 R01
Q11 R11

Q01
 Q11

= . R01
R11

R01
R11

= Q02 R02

TSQR: QR of a Tall, Skinny matrix

W =

Q00 R00
Q10 R10
Q20 R20
Q30 R30

W0
W1
W2
W3

Q00
 Q10
 Q20
 Q30

= = .

R00
R10
R20
R30

R00
R10
R20
R30

=
Q01 R01
Q11 R11

Q01
 Q11

= . R01
R11

R01
R11

= Q02 R02

Output = { Q00, Q10, Q20, Q30, Q01, Q11, Q02, R02 }

TSQR: An Architecture-Dependent Algorithm

W =

W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02
Parallel:

W =

W0
W1
W2
W3

R01 R02

R00

R03

Sequential:

W =

W0
W1
W2
W3

R00
R01

R01

R11
R02

R11

R03

Dual Core:

Can choose reduction tree dynamically
Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?

TSQR Performance Results
• Parallel

– Intel Clovertown
– Up to 8x speedup (8 core, dual socket, 10M x 10)

– Pentium III cluster, Dolphin Interconnect, MPICH
• Up to 6.7x speedup (16 procs, 100K x 200)

– BlueGene/L
• Up to 4x speedup (32 procs, 1M x 50)

– Tesla C 2050 / Fermi
• Up to 13x (110,592 x 100)

– Grid – 4x on 4 cities vs 1 city (Dongarra, Langou et al)
– Cloud (Gleich, Benson)

• Sequential
– “Infinite speedup” for out-of-Core on PowerPC laptop

• As little as 2x slowdown vs (predicted) infinite DRAM
• LAPACK with virtual memory never finished

• Joint work with Grigori, Hoemmen, Langou, Anderson, Ballard, Keutzer, others

Brief history/future of (Dense) Linear Algebra software (6/6)

• Communication-Avoiding for everything (open problems…)
– Extensions to Strassen-like algorithms

• Extensions for multicore
– PLASMA – Parallel Linear Algebra for Scalable Multicore Architectures

• Dynamically schedule tasks into which algorithm is decomposed, to
minimize synchronization, keep all processors busy

• Release 2.4.5 at icl.cs.utk.edu/plasma/

• Extensions for heterogeneous architectures, eg CPU + GPU
– “Benchmarking GPUs to tune Dense Linear Algebra”

• Best Student Paper Prize at SC08 (Vasily Volkov)
• Paper, slides and code at www.cs.berkeley.edu/~volkov

– Lower, matching upper bounds (tech report at bebop.cs.berkeley.edu)
– MAGMA – Matrix Algebra on GPU and Multicore Architectures

• Release 1.2.1 at icl.cs.utk.edu/magma/

• How much code generation can we automate?
– MAGMA , and FLAME (www.cs.utexas.edu/users/flame/)

http://www.cs.berkeley.edu/~volkov
http://www.cs.utexas.edu/users/flame/

SPARSE LINEAR ALGEBRA MOTIF

Sparse Matrix Computations
• Similar problems to dense matrices

– Ax=b, Least squares, Ax = λx, SVD, …

• But different algorithms!
– Exploit structure: only store, work on nonzeros
– Direct methods

• LU, Cholesky for Ax=b, QR for Least squares
• See crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf

for a survey of available serial and parallel sparse solvers
• See crd.lbl.gov/~xiaoye/SuperLU/index.html for LU codes

– Iterative methods – for Ax=b, least squares, eig, SVD
• Use simplest operation: Sparse-Matrix-Vector-Multiply (SpMV)
• Krylov Subspace Methods: find “best” solution in space

spanned by vectors generated by SpMVs

http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf
http://crd.lbl.gov/~xiaoye/SuperLU/index.html

Choosing a Krylov Subspace Method for Ax=b

A symmetric?

AT available? A definite?

Storage
Expensive?

A well-
conditioned?

A well-
conditioned?

Largest/smallest
eigenvalues

known?

Try
GMRES

Try CGS,
BiCGStab,

or
GMRES(k)

Try
QMR

Try
CG on
normal
eqns.

Try
MINRES

or
Nonsymm.

method

Try
CG

Try CG with
Chebyshev
acceleration

No

No

No No Yes
No

Yes

No Yes

Yes Yes No
Yes

Yes

• All depend on SpMV
• See www.netlib.org/templates for Ax=b
• See www.cs.ucdavis.edu/~bai/ET/contents.html for Ax=λx and SVD

http://www.netlib.org/templates
http://www.cs.ucdavis.edu/~bai/ET/contents.html

Sparse Outline

• Approaches to Automatic Performance Tuning
• Results for sparse matrix kernels

– Sparse Matrix Vector Multiplication (SpMV)
– Sequential and Multicore results

• OSKI = Optimized Sparse Kernel Interface
– pOSKI = parallel OSKI

• Tuning Entire Sparse Solvers
– Avoiding Communication

• What is a sparse matrix?

Approaches to Automatic Performance Tuning

• Goal: Let machine do hard work of writing fast code
• Why is tuning dense BLAS “easy”?

– Can do the tuning off-line: once per architecture, algorithm
– Can take as much time as necessary (hours, a week…)
– At run-time, algorithm choice may depend only on few parameters

(matrix dimensions)

• Can’t always do tuning off-line
– Algorithm and implementation may strongly depend on data only known

at run-time
– Ex: Sparse matrix nonzero pattern determines both best data structure

and implementation of Sparse-matrix-vector-multiplication (SpMV)
– Part of search for best algorithm must be done (very quickly!) at run-time

• Tuning FFTs and signal processing
– Seems off-line, but maybe not, because of code size
– www.spiral.net, www.fftw.org

http://www.spiral.net/
http://www.fftw.org/

Source: Accelerator Cavity Design Problem (Ko via Husbands)

Linear Programming Matrix

…

A Sparse Matrix You Use Every Day

Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)*x(j)

for each row i
 for k=ptr[i] to ptr[i+1] do
 y[i] = y[i] + val[k]*x[ind[k]]

SpMV with Compressed Sparse Row (CSR) Storage

Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)*x(j)

for each row i
 for k=ptr[i] to ptr[i+1] do
 y[i] = y[i] + val[k]*x[ind[k]]

Only 2 flops per
2 mem_refs:
Limited by getting
data from memory

Example: The Difficulty of Tuning

• n = 21200
• nnz = 1.5 M
• kernel: SpMV

• Source: NASA

structural
analysis problem

Example: The Difficulty of Tuning

• n = 21200
• nnz = 1.5 M
• kernel: SpMV

• Source: NASA

structural analysis
problem

• 8x8 dense substructure:
exploit this to limit
#mem_refs

Speedups on Itanium 2:
The Need for Search

Reference

Best: 4x2

Mflop/s

Mflop/s

Register Profile: Itanium 2

190 Mflop/s

1190 Mflop/s

Register Profiles: IBM and Intel IA-
64

Power3 - 17% Power4 - 16%

Itanium 2 - 33% Itanium 1 - 8%

252 Mflop/s

122 Mflop/s

820 Mflop/s

459 Mflop/s

247 Mflop/s

107 Mflop/s

1.2 Gflop/s

190 Mflop/s

Register Profiles: Sun and Intel x86

Ultra 2i - 11% Ultra 3 - 5%

Pentium III-M - 15% Pentium III - 21%

72 Mflop/s

35 Mflop/s

90 Mflop/s

50 Mflop/s

108 Mflop/s

42 Mflop/s

122 Mflop/s

58 Mflop/s

Another example of tuning challenges

• More complicated
non-zero structure in
general

• N = 16614
• NNZ = 1.1M

Zoom in to top corner

• More complicated
non-zero structure
in general

• N = 16614
• NNZ = 1.1M

3x3 blocks look natural, but…

• More complicated non-zero
structure in general

• Example: 3x3 blocking
– Logical grid of 3x3 cells

• But would lead to lots of
“fill-in”

Extra Work Can Improve Efficiency!

• More complicated non-zero
structure in general

• Example: 3x3 blocking
– Logical grid of 3x3 cells
– Fill-in explicit zeros
– Unroll 3x3 block multiplies
– “Fill ratio” = 1.5

• On Pentium III: 1.5x speedup!
– Actual mflop rate

1.52 = 2.25x higher

Selecting Register Block Size r x c
• Off-line benchmark

– Precompute Mflops(r,c) using dense A for each r x c
– Once per machine/architecture

• Run-time “search”
– Sample A to estimate Fill(r,c) for each r x c
– Control cost = O(s·nnz) by controlling fraction s ∈ [0,1] sampled
– Control s automatically by computing statistical confidence intervals, by

monitoring variance

• Run-time heuristic model
– Choose r, c to minimize time ~ Fill(r,c) / Mflops(r,c)

• Cost of tuning
– Lower bound: convert matrix in 5 to 40 unblocked SpMVs
– Heuristic: 1 to 11 SpMVs

• Tuning only useful when we do many SpMVs
– Common case, eg in sparse solvers

Accuracy of the Tuning Heuristics
(1/4)

NOTE: “Fair” flops used (ops on explicit zeros not counted as “work”)
See p. 375 of Vuduc’s thesis for matrices

Accuracy of the Tuning Heuristics
(2/4)

DGEMV

Example: Bounds on Itanium 2
Upper bound counts only
compulsory memory traffic

PAPI upper bound
counts true traffic

Summary of Other Sequential
Performance Optimizations

• Optimizations for SpMV
– Register blocking (RB): up to 4x over CSR
– Variable block splitting: 2.1x over CSR, 1.8x over RB
– Diagonals: 2x over CSR
– Reordering to create dense structure + splitting: 2x over CSR
– Symmetry: 2.8x over CSR, 2.6x over RB
– Cache blocking: 2.8x over CSR
– Multiple vectors (SpMM): 7x over CSR
– And combinations…

• Sparse triangular solve
– Hybrid sparse/dense data structure: 1.8x over CSR

• Higher-level kernels
– A·AT·x, AT·A·x: 4x over CSR, 1.8x over RB
– A2·x: 2x over CSR, 1.5x over RB
– [A·x, A2·x, A3·x, .. , Ak·x] …. more to say later

Source: Accelerator Cavity Design Problem (Ko via Husbands)

Can we reorder the
rows and columns
to create dense blocks,
to accelerate SpMV?

Post-RCM (Breadth-first-search) Reordering

Moving nonzeros nearer
the diagonal should
create dense block, but
let’s zoom in and see…

100x100 Submatrix Along Diagonal

Here is the top 100x100
submatrix before RCM

Before: Green + Red
After: Green + Blue

“Microscopic” Effect of RCM Reordering

Here is the top 100x100
submatrix after RCM:
red entries move to the
blue locations.
More dense blocks, but
could be better, so let’s
try reordering again,
using TSP (Travelling
Saleman Problem)

“Microscopic” Effect of Combined RCM+TSP Reordering

Before: Green + Red
After: Green + Blue

Here is the top 100x100
submatrix after RCM and
TSP: red entries move
to the blue locations.
Lots of dense blocks,
as desired!

Speedups (using
symmetry too):

Itanium 2: 1.7x
Pentium 4: 2.1x
Power 4: 2.1x
Ultra 3: 3.3x

65

Multicore SMPs Used for Tuning SpMV

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown)

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls)

66

Multicore SMPs Used for Tuning SpMV

Intel Xeon E5345 (Clovertown)

• Cache based

• 8 Threads

AMD Opteron 2356 (Barcelona)

• Cache based

• 8 Threads
• NUMA

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls)

• Cache based • Local-Store based

• 128 Threads (CMT) • 16 Threads

• NUMA • NUMA

• 75 GFlops • 74 GFlops

• 19 GFlops • 29 Gflops (SPEs only)

• 21/10 GB/s R/W BW • 21 GB/s R/W BW

• 42/21 GB/s R/W BW • 51 GB/s R/W BW

67

Set of 14 test matrices

• All bigger than the caches of our SMPs

Dense

Protein FEM /
Spheres

FEM /
Cantilever

Wind
Tunnel

FEM /
Harbor QCD FEM /

Ship Economics Epidemiology

FEM /
Accelerator Circuit webbase

LP

2K x 2K Dense matrix
stored in sparse format

Well Structured
(sorted by nonzeros/row)

Poorly Structured
hodgepodge

Extreme Aspect Ratio
(linear programming)

68

SpMV Performance: Naive parallelization

• Out-of-the box SpMV
performance on a suite of 14
matrices

• Scalability isn’t great:
 Compare to # threads
 8 8
 128 16

Naïve Pthreads

Naïve

SpMV Performance: NUMA and Software Prefetching

69

 NUMA-aware allocation is
essential on NUMA SMPs.

 Explicit software prefetching
can boost bandwidth and
change cache replacement
policies

 used exhaustive search

SpMV Performance: “Matrix Compression”

70

 Compression includes
 register blocking
 other formats
 smaller indices

 Use heuristic rather than
search

71

SpMV Performance: cache and TLB blocking

+Cache/LS/TLB Blocking

+Matrix Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

72

SpMV Performance: Architecture specific optimizations

+Cache/LS/TLB Blocking

+Matrix Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

73

SpMV Performance: max speedup

• Fully auto-tuned SpMV
performance across the suite of
matrices

• Included SPE/local store
optimized version

• Why do some optimizations work
better on some architectures?

+Cache/LS/TLB Blocking

+Matrix Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

2.7x 4.0x

2.9x 35x

Optimized Sparse Kernel Interface - pOSKI

• Provides sparse kernels automatically tuned for user’s
matrix & machine
– BLAS-style functionality: SpMV, Ax & ATy
– Hides complexity of run-time tuning

• Faster than previous implementations
– Up to 7.8x over reference serial implementation on Sandy Bridge E
– Up to 4.5x over OSKI on Sandy Bridge E
– Up to 2.1x over MKL on Nehalem

• bebop.cs.berkeley.edu/poski

• Ongoing work by the Berkeley Benchmarking and
Optimization (BeBop) group

Optimizations in pOSKI, so far

• Fully automatic heuristics for
– Sparse matrix-vector multiply (Ax, ATx)

• Register-level blocking, Thread-level blocking
• SIMD, software prefetching, software pipelining, loop unrolling
• NUMA-aware allocations

• “Plug-in” extensibility

– Very advanced users may write their own heuristics, create new data
structures/code variants and dynamically add them to the system

• Other kernels just in OSKI so far

– ATAx, Akx
– A-1x : Sparse triangular solver (SpTS)

• Other optimizations under development

– Cache-level blocking, Reordering (RCM, TSP), variable block structure, index
compressing, Symmetric storage, etc.

How pOSKI Tunes (Overview)

1. Build for
Target Arch. 2. Benchmark

Generated
Code

Variants

Library Install-Time (offline) Application Run-Time
Sample Dense Matrix

(r,c)
(r,c) = Register Block size
(d) = prefetching distance
(d) = SIMD implementation

(r,c,d,imp,…)

Benchmark
Data

&
Selected

Code Variants

…..

….. 2. Evaluate
Models

3. Select
Data Struct.

& Code

2. Evaluate
Models

3. Select
Data Struct.

& Code

User’s Matrix

1. Partition Workload
from program

monitoring

Empirical &
Heuristic

Search

History

User’s hints

Submatrix
thread Submatrix ….

To user: Matrix handle for kernel calls

How pOSKI Tunes (Overview)

• At library build/install-time
– Generate code variants

• Code generator (Phyton) generates code variants for various implementations
– Collect benchmark data

• Measures and records speed of possible sparse data structure and code variants on
target architecture

– Select best code variants & benchmark data
• prefetching distance, SIMD implementation

– Installation process uses standard, portable GNU AutoTools
• At run-time

– Library “tunes” using heuristic models
• Models analyze user’s matrix & benchmark data to choose optimized data

structure and code
• User may re-collect benchmark data with user’s sparse matrix (under development)

– Non-trivial tuning cost: up to ~40 mat-vecs
• Library limits the time it spends tuning based on estimated workload

– provided by user or inferred by library
• User may reduce cost by saving tuning results for application on future runs with

same or similar matrix (under development)

How to call pOSKI: Basic Usage

• May gradually migrate existing apps
– Step 1: “Wrap” existing data structures
– Step 2: Make BLAS-like kernel calls

int* ptr = …, *ind = …; double* val = …; /* Matrix, in CSR format */
double* x = …, *y = …; /* Let x and y be two dense vectors */

/* Compute y = β·y + α·A·x, 500 times */
for(i = 0; i < 500; i++)

 my_matmult(ptr, ind, val, α, x, β, y);

How to call pOSKI: Basic Usage

• May gradually migrate existing apps
– Step 1: “Wrap” existing data structures
– Step 2: Make BLAS-like kernel calls

int* ptr = …, *ind = …; double* val = …; /* Matrix, in CSR format */
double* x = …, *y = …; /* Let x and y be two dense vectors */
/* Step 1: Create a default pOSKI thread object */
poski_threadarg_t *poski_thread = poski_InitThread();

/* Step 2: Create pOSKI wrappers around this data */
poski_mat_t A_tunable = poski_CreateMatCSR(ptr, ind, val, nrows, ncols,

nnz, SHARE_INPUTMAT, poski_thread, NULL, …);
poski_vec_t x_view = poski_CreateVec(x, ncols, UNIT_STRIDE, NULL);
poski_vec_t y_view = poski_CreateVec(y, nrows, UNIT_STRIDE, NULL);

/* Compute y = β·y + α·A·x, 500 times */
for(i = 0; i < 500; i++)

 my_matmult(ptr, ind, val, α, x, β, y);

How to call pOSKI: Basic Usage

• May gradually migrate existing apps
– Step 1: “Wrap” existing data structures
– Step 2: Make BLAS-like kernel calls

int* ptr = …, *ind = …; double* val = …; /* Matrix, in CSR format */
double* x = …, *y = …; /* Let x and y be two dense vectors */
/* Step 1: Create a default pOSKI thread object */
poski_threadarg_t *poski_thread = poski_InitThread();

/* Step 2: Create pOSKI wrappers around this data */
poski_mat_t A_tunable = poski_CreateMatCSR(ptr, ind, val, nrows, ncols,

nnz, SHARE_INPUTMAT, poski_thread, NULL, …);
poski_vec_t x_view = poski_CreateVec(x, ncols, UNIT_STRIDE, NULL);
poski_vec_t y_view = poski_CreateVec(y, nrows, UNIT_STRIDE, NULL);

/* Step 3: Compute y = β·y + α·A·x, 500 times */
for(i = 0; i < 500; i++)

 poski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);

How to call pOSKI:
Tune with Explicit Hints

• User calls “tune” routine (optional)
– May provide explicit tuning hints

poski_mat_t A_tunable = poski_CreateMatCSR(…);
 /* … */

/* Tell pOSKI we will call SpMV 500 times (workload hint) */
poski_TuneHint_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view,500);
/* Tell pOSKI we think the matrix has 8x8 blocks (structural hint) */
poski_TuneHint_Structure(A_tunable, HINT_SINGLE_BLOCKSIZE, 8, 8);

/* Ask pOSKI to tune */
poski_TuneMat(A_tunable);

for(i = 0; i < 500; i++)

 poski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);

How to call pOSKI: Implicit Tuning

• Ask library to infer workload (optional)
– Library profiles all kernel calls
– May periodically re-tune

 poski_mat_t A_tunable = poski_CreateMatCSR(…);
 /* … */

 for(i = 0; i < 500; i++) {
 poski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);
 poski_TuneMat(A_tunable); /* Ask pOSKI to tune */
 }

Performance on Intel Sandy Bridge E

4.8x

3.2x

4.5x

2.9x

4.1x 4.5x

4.7x

• Jaketown: i7-3960X @ 3.3 GHz
• #Cores: 6 (2 threads per core), L3:15MB
• pOSKI SpMV (Ax) with double precision float-point
• MKL Sparse BLAS Level 2: mkl_dcsrmv()

Avoiding Communication in Sparse Linear Algebra

• Computational intensity of one SpMV ≤ 2, limits performance
• k-steps of typical iterative solver for Ax=b or Ax=λx

– Does k SpMVs with starting vector (eg with b, if solving Ax=b)
– Finds “best” solution among all linear combinations of these k+1 vectors
– Many such “Krylov Subspace Methods”

• Conjugate Gradients, GMRES, Lanczos, Arnoldi, …
• Goal: minimize communication in Krylov Subspace Methods

– Assume matrix “well-partitioned,” with modest surface-to-volume ratio
– Parallel implementation

• Conventional: O(k log p) messages, because k calls to SpMV
• New: O(log p) messages - optimal

– Serial implementation
• Conventional: O(k) moves of data from slow to fast memory
• New: O(1) moves of data – optimal

• Lots of speed up possible (modeled and measured)
– Price: some redundant computation, numerical stability issues

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Example: A tridiagonal, n=32, k=3
• Works for any “well-partitioned” A

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Example: A tridiagonal, n=32, k=3

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Example: A tridiagonal, n=32, k=3

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Example: A tridiagonal, n=32, k=3

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Example: A tridiagonal, n=32, k=3

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

• Example: A tridiagonal, n=32, k=3

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]
• Sequential Algorithm

• Example: A tridiagonal, n=32, k=3

Step 1

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]
• Sequential Algorithm

• Example: A tridiagonal, n=32, k=3

Step 1 Step 2

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]
• Sequential Algorithm

• Example: A tridiagonal, n=32, k=3

Step 1 Step 2 Step 3

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]
• Sequential Algorithm

• Example: A tridiagonal, n=32, k=3

Step 1 Step 2 Step 3 Step 4

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]
• Parallel Algorithm

• Example: A tridiagonal, n=32, k=3
• Each processor communicates once with neighbors

Proc 1 Proc 2 Proc 3 Proc 4

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

• Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]
• Parallel Algorithm

• Example: A tridiagonal, n=32, k=3
• Each processor works on (overlapping) trapezoid

Proc 1 Proc 2 Proc 3 Proc 4

Same idea works for general sparse matrices

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

Partitioning by rows 
 Graph partitioning

Processing left to right 
 Traveling Salesman Problem

What about multicore?
• Two kinds of communication to minimize

– Between processors on the chip
– Between on-chip cache and off-chip DRAM

• Use hybrid of both techniques described so far
– Use parallel optimization so each core can work

independently
– Use sequential optimization to minimize off-chip

DRAM traffic of each core

Speedups on Intel Clovertown (8 core)
Test matrices include stencils and practical matrices

See SC09 paper on bebop.cs.berkeley.edu for details

Minimizing Communication of GMRES
Classical GMRES for Ax=b

 for i=1 to k
 w = A * v(i-1)
 MGS(w, v(0),…,v(i-1))
 … Modified Gram-Schmidt
 … to make w orthogonal
 update v(i), H
 … H = matrix of coeffs
 … from MGS
 endfor
 solve LSQ problem with H for x

Communication cost =
 k copies of A, vectors from
 slow to fast memory

Communication-Avoiding GMRES, ver. 1

 W = [v, Av, A2v, … , Akv]
 [Q,R] = TSQR(W)
 … “Tall Skinny QR”
 … new optimal QR discussed before
 Build H from R
 solve LSQ problem with H for x

Communication cost =
 O(1) copy of A, vectors from
 slow to fast memory

Let’s confirm that we still get the right answer …

8/21/2009 James Demmel 101

Right answer (converges)

Oops, doesn’t converge

Minimizing Communication of GMRES
(and getting the right answer)

Communication-Avoiding GMRES, ver. 2

 W = [v, p1(A)v, p2(A)v, … , pk(A)v]
 … where pi(A)v is a degree-i polynomial in A multiplied by v
 … polynomials chosen to keep vectors independent
 [Q,R] = TSQR(W)
 … “Tall Skinny QR”
 … new optimal QR discussed before
 Build H from R
 … slightly different R from before
 solve LSQ problem with H for x

Communication cost still optimal:
 O(1) copy of A, vectors from
 slow to fast memory

8/21/2009 James Demmel 103

Right answer (converges)

Oops, doesn’t converge

Converges again!

Speed ups on 8-core Clovertown
CA-GMRES = Communication-Avoiding GMRES

Paper by Mohiyuddin, Hoemmen, D. in Supercomputing09

Summary of what is known, open

• GMRES
– Can independently choose k to optimize speed, restart length r to

optimize convergence
– Need to “co-tune” Akx kernel and TSQR
– Know how to use more stable polynomial bases
– Proven speedups

• Can similarly reorganize other Krylov methods
– Arnoldi and Lanczos, for Ax = λx and for Ax = λMx
– Conjugate Gradients (CG), for Ax = b
– Biconjugate Gradients (BiCG), CG Squared (CGS), BiCGStab for Ax=b
– Other Krylov methods?

• Preconditioning – how to handle MAx = Mb

What is a sparse matrix?

• How much infrastructure (for code creation,
tuning or interfaces) can we reuse for all these
cases? 106

Sparse Conclusions
• Fast code must minimize communication

– Especially for sparse matrix computations because communication
dominates

• Generating fast code for a single SpMV
– Design space of possible algorithms must be searched at run-time,

when sparse matrix available
– Design space should be searched automatically

• Biggest speedups from minimizing communication in an
entire sparse solver
– Many more opportunities to minimize communication in multiple

SpMVs than in one
– Requires transforming entire algorithm
– Lots of open problems

• For more information, see bebop.cs.berkeley.edu

STRUCTURED GRID MOTIF

Source: Sam Williams

Structured Grids
Finite Difference Operators

• Applying the finite difference method to PDEs on structured grids produces stencil operators
that must be applied to all points in the discretized grid.

• Consider the 7-point Laplacian Operator
• Challenged by bandwidth, temporal reuse, efficient SIMD, etc…
 but trivial to (correctly) parallelize
• most optimizations can be independently implemented,
 (but not performance independent)
• core (cache) blocking and cache bypass were clearly integral to performance

109
+Thread
Blocking +SW Prefetch +Register

Blocking
+Core
Blocking

+NUMA &
Affinity Naïve +Cache

Bypass
+Array
Padding

+2nd Pass in
Greedy
Search

y+1

y-1

x-1

z-1

z+1

x+1 x,y,z

Structured Grids
Lattice Boltzmann Methods

• LBMHD simulates charged plasmas in a magnetic field (MHD) via Lattice Boltzmann Method
(LBM) applied to CFD and Maxwell’s equations.

• To monitor density, momentum, and magnetic field, it requires maintaining two “velocity”
distributions

– 27 (scalar) element velocity distribution for momentum
– 15 (Cartesian) element velocity distribution for magnetic field
– = 632 bytes / grid point / time step

• Jacobi-like time evolution requires ~1300 flops and ~1200 bytes of memory traffic

momentum distribution

14

4

13

16

5

8

9

21

12

+Y

2

25

1

3

24

23

22

26

0

18

6

17

19

7

10

11

20

15
+Z

+X

magnetic distribution

14

13

16

21

12

25

24

23

22

26

18

17

19

20

15

+Y

+Z

+X

macroscopic variables

+Y

+Z

+X

Structured Grids
Lattice Boltzmann Methods

 Challenged by:
 The higher flop:byte ratio of ~1.0 is still bandwidth-limiting
 TLB locality (touch 150 pages per lattice update)
 cache associativity (150 disjoint lines)
 efficient SIMDization

 easy to (correctly) parallelize
 explicit SIMDization & SW prefetch are dependent on unrolling
 Ultimately, 2 of 3 machines are bandwidth-limited

*collision() only

+Explicit
SIMDization +SW Prefetch +Unrolling +Vectorization +Padding Reference

+NUMA
+small
pages

Structured Grids
Lattice Boltzmann Methods

• Distributed Memory & Hybrid
• MPI, MPI+pthreads, MPI+OpenMP
 (SPMD, SPMD2, SPMD+Fork/Join)

• Observe that for this large problem,

auto-tuning flat MPI delivered
significant boosts (2.5x)

• Extending auto-tuning to include the
domain decomposition and balance
between threads and processes
provided an extra 17%

• 2 processes with 2 threads was best
 (true for Pthreads and OpenMP)

DELIVERING AUTOTUNING WITH
SEJITS

Source: Shoaib Kamil

What is SEJITS?

• Goal: Let non-expert programmers quickly
write their algorithms in an easy-to-use
language, but still get high performance
– First example: Python

• By using common “patterns” to write
algorithms, and hints about tuning
opportunities, enable system to autotune

• SEJITS = Selective Embedded Just-in-time
Specialization
 8/21/2009 James Demmel 114

.py

OS/HW

f() h()

Specializer

.c

P
LL

 In
te

rp

Productivity app

.so

cc/ld

$

Delivering Autotuning via SEJITS

Selective

Embedded

JIT

SEJITS
Specialization

Several examples exist now:
 Structured Grids/Stencils
 CA-Conjugate Gradient
 Tuned SpMV over other
 semirings

Summary

• “Design spaces” for algorithms and
implementations are large and growing

• Finding the best algorithm/implementation by
hand is hard and getting harder

• Ideally, we would have a database of
“techniques” that would grow over time, and
be searched automatically whenever a new
input and/or machine comes along

• Lots of work to do…

	PARLab Parallel Boot Camp���Computational Patterns�and Autotuning��
	Outline
	“7 Motifs” of High Performance Computing
	“7 Motifs” of High Performance Computing
	Organizing Linear Algebra Motifs - �in books and on-line
	Why Minimize Communication? (1/2)
	Why Minimize Communication? (2/2)
	Why Minimize Communication? (2/2)
	Slide Number 9
	Obstacle to avoiding communication:�Low “computational intensity”
	Dense Linear Algebra Motif
	 Brief history of (Dense) Linear Algebra software (1/6)
	Brief history of (Dense) Linear Algebra software (2/6)
	Brief history of (Dense) Linear Algebra software (3/6)
	Matrix-multiply, optimized several ways
	Faster Matmul C=A*B by “Blocking”
	Lower bounds on Communication for Matmul
	How hard is hand-tuning, anyway?
	How hard is hand-tuning, anyway?
	What part of the Matmul Search Space Looks Like
	Autotuning DGEMM with ATLAS (n = 500)
	Brief history of (Dense) Linear Algebra software (4/6)
	Brief history of (Dense) Linear Algebra software (5/6)
	Success Stories for Sca/LAPACK
	Lower bound for all “n3-like” linear algebra
	Lower bound for all “n3-like” linear algebra
	Lower bound for all “n3-like” linear algebra
	Can we attain these lower bounds?
	Example: “2.5D” Matrix multiply�Lower bound decreases as M increases,�even beyond minimum needed (3n2/p) – attainable!�
	2.5D Matrix Multiply Timing Breakdown
	TSQR: QR of a Tall, Skinny matrix
	TSQR: QR of a Tall, Skinny matrix
	TSQR: An Architecture-Dependent Algorithm
	TSQR Performance Results
	Brief history/future of (Dense) Linear Algebra software (6/6)
	Sparse Linear Algebra Motif
	Sparse Matrix Computations
	Choosing a Krylov Subspace Method for Ax=b
	Sparse Outline
	Approaches to Automatic Performance Tuning
	Slide Number 41
	Linear Programming Matrix
	A Sparse Matrix You Use Every Day
	SpMV with Compressed Sparse Row (CSR) Storage
	Example: The Difficulty of Tuning
	Example: The Difficulty of Tuning
	Speedups on Itanium 2: �The Need for Search
	Register Profile: Itanium 2
	Register Profiles: IBM and Intel IA-64
	Register Profiles: Sun and Intel x86
	Another example of tuning challenges
	Zoom in to top corner
	3x3 blocks look natural, but…
	Extra Work Can Improve Efficiency!
	Selecting Register Block Size r x c
	Accuracy of the Tuning Heuristics (1/4)
	Accuracy of the Tuning Heuristics (2/4)
	Example: Bounds on Itanium 2
	Summary of Other Sequential �Performance Optimizations
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Multicore SMPs Used for Tuning SpMV
	Multicore SMPs Used for Tuning SpMV
	Set of 14 test matrices
	SpMV Performance: Naive parallelization
	SpMV Performance: NUMA and Software Prefetching
	SpMV Performance: “Matrix Compression”
	SpMV Performance: cache and TLB blocking
	SpMV Performance: Architecture specific optimizations
	SpMV Performance: max speedup
	Optimized Sparse Kernel Interface - pOSKI
	Optimizations in pOSKI, so far
	How pOSKI Tunes (Overview)
	How pOSKI Tunes (Overview)
	How to call pOSKI: Basic Usage
	How to call pOSKI: Basic Usage
	How to call pOSKI: Basic Usage
	How to call pOSKI: �Tune with Explicit Hints
	How to call pOSKI: Implicit Tuning
	Performance on Intel Sandy Bridge E
	Avoiding Communication in Sparse Linear Algebra
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	What about multicore?
	Slide Number 99
	Minimizing Communication of GMRES
	Slide Number 101
	Minimizing Communication of GMRES�(and getting the right answer)
	Slide Number 103
	Speed ups on 8-core Clovertown
	Summary of what is known, open
	What is a sparse matrix?
	Sparse Conclusions
	Structured Grid Motif
	Structured Grids �Finite Difference Operators
	Structured Grids �Lattice Boltzmann Methods
	Structured Grids �Lattice Boltzmann Methods
	Structured Grids �Lattice Boltzmann Methods
	Delivering Autotuning with SEJITS
	What is SEJITS?
	Slide Number 115
	Summary

