PARLab Parallel Boot Camp

Short Course on Parallel Computing August 19-21, 2013 parlab.eecs.berkeley.edu/2013bootcamp

Jim Demmel EECS and Mathematics University of California, Berkeley

- Motivation and Goals
- Background
 - ParLab and ASPIRE, research centers in Parallel Computing
 - The Designated Emphasis (DE) in Computational Science and Engineering (CSE)
 - CSE at Lawrence Berkeley National Lab
 - XSEDE Provide access to NSF's cyberinfrastructure, and educate users
- Schedule and Instructors
- Logistics
- The Audience

- Parallel Computing is becoming ubiquitous
 - Only way forward for computing industry (unless you don't care if your programs never run faster than in 2008)
 - Unfortunately, parallel programming is (still) harder than sequential programming
 - Better (easier) programming tools under development, but we still need to train people to "think parallel"
- So welcome!

Motivation (2/2)

- A
- Recent events at UCB will provide support for many new activities to develop and use parallel computing
 - ParLab established parlab.eecs.berkeley.edu
 - » Research center about "Multicore Revolution"
 - » Many related, large grants too (AmpLAB, ...)
 - ASPIRE established follow-on to ParLab
 - Designated Emphasis in Computational Science and Engineering (CSE) established – cse.berkeley.edu
 - » Graduate program with 117 faculty from 22 depts.
 - XSEDE NSF follow-on to Teragrid

» Broadcasting Berkeley's parallel computing courses

 CRT Building @ LBL - new building under construction, to house supercomputers and research teams

Short Course Goals

- Teach the basics about parallelism
 - How to program, including hands-on lab
- Tools you can use now (simple and advanced)
- Tools we hope to build, and ongoing research

Berkeley ParLab Project

Krste Asanovic, Ras Bodik, Jim Demmel, Tony Keaveny, Kurt Keutzer, John Kubiatowicz, Edward Lee, Nelson Morgan, Dave Patterson, Koushik Sen, John Wawrzynek, David Wessel, and Kathy Yelick

7 Dwarfs of High Performance Computing (HPC)

Particle Methods

Unstructured Grid Monte Carlo

Embed SPEC DB Games ML CAD HPC

Structured Grid Dense Matrix Sparse Matrix

Spectral (FFT)

Particle Methods

Unstructured Grid Monte Carlo

13 Motifs (nee "Dwarf") of Parallel Computing

Popularity: (Red Hot / Blue Cool)

	Embed	SPEC	DB	Games	ML	CAD	НРС
Finite State Mach.							
Circuits							
Graph Algorithms							
Structured Grid							
Dense Matrix							
Sparse Matrix							
Spectral (FFT)							
Dynamic Prog							
Particle Methods							
Backtrack/ B&B							
Graphical Models							
Unstructured Grid							
Monte Carlo							

Motifs in ParLab Applications (Red Hot / Blue Cool)

What happened to Monte Carlo?

Our Pattern Language 2.0

Productivity Layer

<u>A</u>lgorithms and <u>S</u>pecializers for <u>P</u>rovably Optimal <u>I</u>mplementations with <u>R</u>esiliency and <u>E</u>fficiency

Krste Asanovic, Jonathan Bachrach, Jim Demmel, Armando Fox, Kurt Keutzer, Borivoje Nikolic, David Patterson, John Wawrzynek <u>http://aspire.eecs.berkeley.edu</u>

Designated Emphasis (DE) in Computational Science and Engineering (CSE)

- Goals
- Participants (117 faculty from 22 departments so far)
- How the DE works
- (New) courses
- Details at citris-uc.org/decse

Designated Emphasis (DE) in CSE

- "Graduate minor"
- Motivation
 - Too little data too slow (climate), too expensive (building chips) or too dangerous (crash testing) to get experimental data, so need to simulate
 - Too much data from DNA sequencers, telescopes, WWW, simulations... so need large scale statistical analysis and machine learning
 - Widespread need to train PhD students (eng. to astro to social science to ...)
 - Opportunities for collaboration, across campus and at LBNL
- Graduate students participate by
 - Getting accepted into existing department/PhD program
 - Taking CSE course requirements
 - Qualifying examination with CSE component
 - Thesis with CSE component
 - Receive "PhD in X with a DE in CSE"
 - Details at citris-uc.org/decse

Participating Departments (1/2) (# faculty by "primary affiliation", # courses)

- •Astronomy (7,3)
- •Bioengineering (3,1)
- •Biostatistics (2,0)
- •Chemical Engineering (6,0)
- •Chemistry (8,1)
- •Civil and Environmental Engineering (7,8)
- •Earth and Planetary Science (6,3)
- •EECS (19,14)
- •IEOR (5,5)
- •School of Information (1,0)

Participating Departments (2/2) (# faculty by "primary affiliation", # courses)

- Integrative Biology (1,0)
- •Materials Science and Engineering (2,1)
- •Mathematics (15, 4)
- •Mechanical Engineering (9, 6)
- •Neuroscience (7,1)
- •Nuclear Engineering (2,1)
- •Physics (1,1)
- •Political Science (2,0)
- •Public Health (2,0)
- •Statistics (5, 11)

Example Course - CS267

- "Applications of Parallel Computing"
 - Long version of this short course!
 - see www.cs.berkeley.edu/~demmel/cs267_Spr13
- Taught every Spring
 - All lectures on web (slides + video), freely available
 - UC Berkeley, UC Merced, UC Santa Cruz, UC Davis in Spr09
- Provided nationwide by XSEDE starting Spring 13
 - Homework done on NSF supercomputer centers (free)
 - For this bootcamp too!
 - Autograding provided

A few sample CS267 Class Projects (all posters and video on web pages)

- Content based image recognition
 - "Find me other pictures of the person in this picture"
- Faster molecular dynamics, applied to Alzheimer's Disease
- Better speech recognition through a faster "inference engine"
- Faster algorithms to tolerate errors in new genome sequencers
- Faster simulation of marine zooplankton population
- Sharing cell-phone bandwidth for faster transfers, better gaming experience
- Economic implications of parallel computing

New CSE Courses

- Python for science AY250
 - Josh Bloom (Astronomy)
 - 3 day summer short course (Aug 20-22, this week!) + seminar
- SW Eng. for Scientific Computing CS194/294
 - Phil Colella (EECS,LBL)
 - For non-CS grads and undergrads
- Understanding Molecular Simulation
 - Phil Geissler (Chem) and Berend Smit (ChemE)
 - Matlab based, students from Chem, ChemE, MSE, ME, BioPhys
- Computer Simulations in the Earth Sciences EPS109
 - Burkhard Militzer (Earth & Planetary Science)
 - Machine learning for understanding simulations/data sets, in Matlab
- Optimization Models in Engineering EE127
 - Laurent El Ghaoui (EECS)
 - Matlab (CVX) based, models not algorithms

Computing Sciences at Berkeley Lab

Kathy Yelick

Associate Lab Director for Computing Sciences Lawrence Berkeley National Laboratory

Professor of Electrical Engineering and Computer Sciences University of California at Berkeley

National Energy Research Scientific Computing Facility

Department of Energy Office of Science (unclassified) Facility

- 4500 users, 600 projects
- 65% from universities
- 1500 refereed publications per year
- Key to 2 Nobel Prizes (2007,2011)

Systems designed for science

- 1.3 PF Hopper system (Cray XE6)
 11th Fastest computer in US, 24th in world
- New system on order

Current NERSC Systems

Large-Scale Computing Systems Hopper (NERSC-6): Cray XE6 6,384 compute nodes, 153,216 cores 144 Tflop/s on applications: 1.3 Pflop/s peak Edison (NERSC-7): Cray Cascade Being installed now 2013 Over 200 Tflop/s on applications, 2 Pflop/s peal Midrange Systems **NERSC Global** Analytics & Testbeds Filesystem (NGF) 140 Tflops total Uses IBM's GPFS Carver • 8.5 PB capacity IBM iDataplex cluster 15GB/s of bandwidth 9884 cores; 106TF **Euclid** PDSF (HEP/NP) (512 GB shared HPSS Archival Storage ~1K core cluster memory) 240 PB capacity Dirac 48 Fermi GenePool (JGI) 5 Tape libraries **GPU** nodes ~5K core cluster 200 TB disk cache Magellan Hadoop 2.1 PB Isilon File System

Computational Research Division

Computational Science

Combustion

Climate

Energy & Environment Cosmology & Astrophysics

Nanoscience

Genomics

Applied Mathematics

Mathematical Models

Adaptive Mesh Refinement

Linear Algebra Interface Methods

Libraries and Frameworks

Computer Science

NVIDIA C2050 (Fermi) 256 128

> $\frac{1}{22}$ $\frac{1}{42}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{2}{4}$ $\frac{1}{8}$ $\frac{1632}{1632}$ Performance & Autotuning

Cloud, grid & distributed computing

and Data

HPC architecture, OS, and compilers

Computational Science at Berkeley Lab

Large-Scale Simulations and Large Numbers of Simulations

Large-Scale discovery of Events

- Petascale simulations produce data too large for manual analysis
- Data analysis using new algorithms (FastBit, Machine Learning) to discover events

Materials Project (joint with MIT)

- Tens of thousands of simulations screen materials
- Goal: cut in half the 18 years from design to manufacturing
- Advance machine learning and data systems

Climate Code is a large community effort. This set of data analysis and simulations by Prabhat and Michael Wehner, LBNL

Materials Project PIs: Gerd Ceder, MIT and Kristin Persson, LBNL

From Teragrid to XSEDE

- Teragrid
 - Easy access to NSF cyberinfrastructure
 - Supercomputers, storage, visualization, networks
 - Education, training and support of users
- XSEDE: Extreme Science and Engineering Discovery Environment
 - Next-Generation Teragrid www.xsede.org
 - Started July 2011, 17 institutions, \$121M over 5 years
 - More educational activities
 - Broadcast selected courses
 - 4 courses (so far) from Berkeley:
 - This bootcamp, CS267, ACTS Workshop, Keutzer's CS194
 - Free accounts on NSF supercomputers to do homework

Schedule and Instructors (1/3)

- Monday, Aug 19
 - 9-9:30 am Introduction and Welcome
 - » Jim Demmel (UCB)
 - 9:30-12pm Introduction to Parallel Architectures and Pthreads
 » John Kubiatowicz (UCB)
 - 12-1:15pm Lunch (see web page for suggested venues)
 - 1:15-2:15pm Shared Memory Programming with OpenMP Basics
 - » Tim Mattson (Intel)
 - 2:15-3:00pm More about OpenMP New Features
 - » Tim Mattson (Intel)
 - 3:00-3:30pm Break
 - 3:30-4:30pm Performance Tuning Random Slowdowns in Recurring Functionalities
 - » Gary Carleton (Intel)
 - 4:30-5:00pm Break/Transition to Hands-on Lab Rooms
 - 5:00-6:00pm Hands-on Lab (Parallel Sessions)
 - » Introduction to NERSC Tools (273, 275, 277 Soda)
 - » Introduction to OpenMP (273, 275, 277 Soda)
 - 6:00-7:00pm -Reception in Soda Hall, 5th Floor!

Schedule and Instructors (2/3)

A

- Tuesday, Aug 20
 - 8:45-9:45am Distributed Memory Programming in MPI
 - » Tim Mattson (Intel)
 - 9:45-10:45am Sources of Parallelism and Locality in Simulation
 - » Jim Demmel (UCB)
 - 10:45-11:15am Break
 - 11:15-12:15am Architecting parallel software with design patterns
 » Kurt Keutzer (UCB)
 - 12:15-1:30pm Lunch
 - 1:30-2:30pm GPU, CUDA, OpenCL Programming
 - » Bryan Catanzaro (NVIDIA Research)
 - 2:30-3:00pm Break / Transition to Hands-on Lab Rooms in Soda Hall
 - 3-6pm Hands-on Lab (Parallel Sessions)
 - » NERSC Tools (273, 275, 277 Soda)
 - » OpenMP (273, 275, 277 Soda)

Schedule and Instructors (3/3)

- Wednesday, Aug 21
 - 8:45-9:45am Partitioned Global Address Space Programming in UPC
 » Kathy Yelick (UCB)
 - 9:45 10:15 Break
 - 10:15-12:15am -Computational Patterns and Autotuning
 » Jim Demmel (UCB)
 - 12:15-1:30pm Lunch
 - 1:30-2:30pm Performance Debugging: Methods and Tools
 » David Skinner (LBL)
 - 2:30-3:30pm Cloud Computing using MapReduce, Hadoop, Spark
 » Matei Zaharia (UCB)
 - 3:30-4:00pm Break
 - 4:00-5:00pm Building Parallel Applications Browsers, Vision and Music,
 » Matt Torok, Michael Anderson, David Wessel (UCB)

Logistics (1/2)

- A
- parlab.eecs.berkeley.edu/2013bootcamplogistics
- Coffee
 - Available outside CITRIS Auditorium, not allowed in lecture hall!
- Live webcast of lectures
 - mms://media.citris.berkeley.edu/parlab2013
- Questions and answers
 - See links on above web page to post questions
 - For on-site and off-site students
- Lecture Materials
 - Slides and archived video will be posted on bootcamp website

Logistics - 3 Kinds of Labs (2/2)

- parlab.eecs.berkeley.edu/2013bootcamplogistics
- Labs for on-site students using NERSC tools
 - Bring your own laptop
 - Different kinds of labs: OpenMP, Pthreads, MPI, CUDA
 - We supply wireless access, accounts at NERSC
 - » TAs: Razvan Carbunescu, Michael Anderson, Erin Carson, Nick Knight, David Sheffield
 - Autograding available
- Labs for on-site students using OpenMP
 - Bring your own laptop
 - We supply wireless access, VM to download and install
 - » Instructor: Tim Mattson
- Labs for off-site students using XSEDE
 - See parlab.eecs.berkeley.edu/2013bootcamplogistics for Q&A
 - Different kinds of labs: OpenMP, Pthreads, MPI

The Audience - you (1/2)

- There are 188 209 registrants
 <u>120</u> 131 on-site, 68 78 off-site registrants
- Who are you?
 - 22 software developers or engineers
 - 8 faculty
 - 148 students (undergrad, grad, postdoc)
 - 31 other: architect / director / sysadmin / consultant / ...

The Audience - you (2/2)

A

- Where are you from?
 - 5 companies
 - 23 universities
 - 17 states, 9 countries
 - Many countries over time (2009-2011 data)

LET'S GET STARTED!