PARLab Parallel Boot Camp

Sources of Parallelism and Locality in Simulation

Jim Demmel EECS and Mathematics University of California, Berkeley

Parallelism and Locality in Simulation

- Parallelism and data locality both critical to performance
 - Arguments must be in same place to perform an operation
 - Moving data most expensive operation
- Real world problems have parallelism and locality:
 - Many objects operate independently of others.
 - Objects often depend much more on nearby than distant objects.
 - Dependence on distant objects can often be simplified.
 - » Example of all three: particles moving under gravity
- Scientific models may introduce more parallelism:
 - When a continuous problem is discretized, time dependencies are generally limited to adjacent time steps.
 - » Helps limit dependence to nearby objects (eg collisions)
 - Far-field effects may be ignored or approximated in many cases.
- Many problems exhibit parallelism at multiple levels

Basic Kinds of Simulation

- Discrete Event Systems
 - "Game of Life", Manufacturing Systems, Finance, Circuits, Pacman ...
- Particle Systems
 - Billiard balls, Galaxies, Atoms, Circuits, Pinball ...
- Lumped Systems (Ordinary Differential Eqns ODEs)
 - Structural Mechanics, Chemical kinetics, Circuits, Star Wars: The Force Unleashed
- Continuous Systems (Partial Differential Eqns PDEs)
 - Heat, Elasticity, Electrostatics, Finance, Circuits, Medical Image Analysis, Terminator 3: Rise of the Machines
- A given phenomenon can be modeled at multiple levels
- Many simulations combine multiple techniques
- For more on simulation in games, see
 - www.cs.berkeley.edu/b-cam/Papers/Parker-2009-RTD

8/20/2013

Example: Circuit Simulation

Circuits are simulated at many different levels

	Level	Primitives	Examples	
Discrete Event	Instruction level	Instructions	SimOS, SPIM	
	Cycle level	Functional units	VIRAM-p	
	Register Transfer Level (RTL)	Register, counter, MUX	VHDL	
	Gate Level	Gate, flip-flop, memory cell	Thor	
\downarrow	Switch level	Ideal transistor	Cosmos	
Lumped Systems	Circuit level	Resistors, capacitors, etc.	Spice	
Continuous Systems	Device level	Electrons, silicon		

8/20/2013

Outline

- Discrete event systems

 Time and space are discrete

 Particle systems

 Important special case of lumped systems

 Lumped systems (ODEs)

 Location/entities are discrete, time is continuous

 Continuous systems (PDEs)
 - Time and space are continuous

Identify common problems and solutions

continuous

Model Problem: Sharks and Fish

- Illustrates parallelization of these simulations
- Basic idea: sharks and fish living in an ocean
 - rules for movement (discrete and continuous)
 - breeding, eating, and death
 - forces in the ocean
 - forces between sea creatures
- 6 different versions
 - Different sets of rules, to illustrate different simulations
- Available in many languages
 - Matlab, pThreads, MPI, OpenMP, Split-C, Titanium, CMF, ...
 - See bottom of www.cs.berkeley.edu/~demmel/cs267_Spr13/
- One or two will be used as lab assignments
 - See bottom of www.cs.berkeley.edu/~driscoll/cs267
 - Rest available for your own classes!

"7 Dwarfs" of High Performance Computing

- Phil Colella (LBL) identified 7 kernels of which most simulation and data-analysis programs are composed:
- 1. Dense Linear Algebra
 - Ex: Solve Ax=b or Ax = 1x where A is a dense matrix
- 2. Sparse Linear Algebra
 - Ex: Solve Ax=b or $Ax = \lambda x$ where A is a sparse matrix (mostly zero)
- 3. Operations on Structured Grids
 - $E_{x: A_{new}(i,j)} = 4^*A(i,j) A(i-1,j) A(i+1,j) A(i,j-1) A(i,j+1)$
- 4. Operations on Unstructured Grids
 - Ex: Similar, but list of neighbors varies from entry to entry
- 5. Spectral Methods
 - Ex: Fast Fourier Transform (FFT)
- 6. Particle Methods
 - Ex: Compute electrostatic forces on n particles, move them
- 7. Monte Carlo
 - Ex: Many independent simulations using different inputs

DISCRETE EVENT SYSTEMS

8/20/2013

Jim Demmel

Discrete Event Systems

 \mathcal{M}

- Systems are represented as:
 - finite set of variables.
 - the set of all variable values at a given time is called the state.
 - each variable is updated by computing a transition function depending on the other variables.
- System may be:
 - synchronous: at each discrete timestep evaluate all transition functions; also called a state machine.
 - asynchronous: transition functions are evaluated only if the inputs change, based on an "event" from another part of the system; also called event driven simulation.
- Example: The "game of life:"
 - Space divided into cells, rules govern cell contents at each step
 - Also available as Sharks and Fish #3 (S&F 3)

Parallelism in Game of Life

- The simulation is synchronous
 - use two copies of the grid (old and new).
 - the value of each new grid cell depends only on 9 cells (itself plus 8 neighbors) in old grid.
 - simulation proceeds in timesteps-- each cell is updated at every step.
- Easy to parallelize by dividing physical domain: *Domain Decomposition*

P1	P2	Ρ3
P4	Р5	P6
P7	P8	P9

Repeat

compute locally to update local system

barrier()

exchange state info with neighbors

until done simulating

- Locality is achieved by using large patches of the ocean
 - Only boundary values from neighboring patches are needed.
- How to pick shapes of domains?

8/20/2013

Regular Meshes

- Suppose graph is nxn mesh with connection NSEW neighbors
 - Which partition has less communication? (n=18, p=9)
- Minimizing communication on mesh = minimizing "surface to volume ratio" of partition

Synchronous Circuit Simulation

- Circuit is a graph made up of subcircuits connected by wires
 - Component simulations need to interact if they share a wire.
 - Data structure is (irregular) graph of subcircuits.
 - Parallel algorithm is timing-driven or synchronous:
 - » Evaluate all components at every timestep (determined by known circuit delay)
- Graph partitioning assigns subgraphs to processors
 - Determines parallelism and locality.
 - Goal 1 is to evenly distribute subgraphs to nodes (load balance).
 - Goal 2 is to minimize edge crossings (minimize communication).
 - Easy for meshes, NP-hard in general, so we will approximate (tools available!)

#edge crossings = 6

#edge crossings = 10

8/20/2013

Jim Demmel

Sharks & Fish in Loosely Connected Ponds

 Parallelization: each processor gets a set of ponds with roughly equal total area

•work is proportional to area, not number of creatures

- One pond can affect another (through streams) but infrequently
- Synchronous simulation communicates more than necessary

8/20/2013

Asynchronous Simulation

- Synchronous simulations may waste time:
 - Simulates even when the inputs do not change.
- Asynchronous (event-driven) simulations update only when an event arrives from another component:
 - No global time steps, but individual events contain time stamps.
 - Example: Game of life in loosely connected ponds (don't simulate empty ponds).
 - Example: Circuit simulation with delays (events are gates changing).
 - Example: Traffic simulation (events are cars changing lanes, etc.).
- Asynchronous is more efficient, but harder to parallelize
 - With message passing, events are naturally implemented as messages, but how do you know when to execute a "receive"?

Scheduling Asynchronous Circuit Simulation

Conservative:

- Only simulate up to (and including) the minimum time stamp of inputs.
- Need deadlock detection if there are cycles in graph
 - » Example on next slide
- Example: Pthor circuit simulator in Splash1 from Stanford.
- Speculative (or Optimistic):
 - Assume no new inputs will arrive and keep simulating.
 - May need to backup if assumption wrong, using timestamps
 - Example: Timewarp [D. Jefferson], Parswec [Wen, Yelick].
- Optimizing load balance and locality is difficult:
 - Locality means putting tightly coupled subcircuit on one processor.
 - Since "active" part of circuit likely to be in a tightly coupled subcircuit, this may be bad for load balance.

Deadlock in Conservative Asynchronous Circuit Simulation

• Example: Sharks & Fish 3, with 3 processors simulating 3 ponds connected by streams along which fish can move

- Suppose all ponds simulated up to time t₀, but no fish move, so no messages sent from one proc to another
 - So no processor can simulate past time t_0
- Fix: After waiting for an incoming message for a while, send out an "Are you stuck too?" message
 - If you ever receive such a message, pass it on
 - If you receive such a message that you sent, you have a deadlock cycle, so just take a step with latest input
- Can be a serial bottleneck

Summary of Discrete Event Simulations

- Model of the world is discrete
 - Both time and space
- Approaches
 - Decompose domain, i.e., set of objects
 - Run each component ahead using
 - »Synchronous: communicate at end of each timestep
 - »Asynchronous: communicate on-demand
 - Conservative scheduling wait for inputs

-need deadlock detection

• Speculative scheduling – assume no inputs –roll back if necessary

PARTICLE SYSTEMS

8/20/2013

Jim Demmel

Particle Systems

- A particle system has
 - a finite number of particles
 - moving in space according to Newton's Laws (i.e. F = ma)
 - time is continuous
- Examples
 - stars in space with laws of gravity
 - electron beam in semiconductor manufacturing
 - atoms in a molecule with electrostatic forces
 - neutrons in a fission reactor
 - cars on a freeway with Newton's laws plus model of driver and engine
 - flying objects in a video game ...
- Reminder: many simulations combine techniques such as particle simulations with some discrete events (eg Sharks and Fish)

Forces in Particle Systems

• Force on each particle can be subdivided

force = external_force + nearby_force + far_field_force

- External force
 - ocean current to sharks and fish world (S&F 1)
 - externally imposed electric field in electron beam
- Nearby force
 - sharks attracted to eat nearby fish (S&F 5)
 - balls on a billiard table bounce off of each other
 - Van der Waals forces in fluid $(1/r^6)$... how Gecko feet work?
- Far-field force
 - fish attract other fish by gravity-like $(1/r^2)$ force (S&F 2)
 - gravity, electrostatics, radiosity in graphics
 - forces governed by elliptic PDE

Example S&F 1: Fish in an External Current

- % fishp = array of initial fish positions (stored as complex numbers)
- % fishv = array of initial fish velocities (stored as complex numbers)
- % fishm = array of masses of fish
- % tfinal = final time for simulation (0 = initial time)
- % Algorithm: update position [velocity] using velocity [acceleration]
- % at each time step
- % Initialize time step, iteration count, and array of times dt = .01; t = 0;

% loop over time steps

while t < tfinal,

fishp = fishp + dt*fishv;

accel = current(fishp)./fishm; fishv = fishv + dt*accel;

% current depends on position

% update time step (small enough to be accurate, but not too small)
dt = min(.1*max(abs(fishv))/max(abs(accel)), .01);

end

8/20/2013

Jim Demmel

Parallelism in External Forces

- These are the simplest
- The force on each particle is independent
- Called "embarrassingly parallel"
 - Corresponds to "map reduce" pattern

- Evenly distribute particles on processors
 - Any distribution works
 - Locality is not an issue, no communication
- For each particle on processor, apply the external force
 - May need to "reduce" (eg compute maximum) to compute time step, other data

Parallelism in Nearby Forces

- Nearby forces require interaction and therefore communication.
- Force may depend on other nearby particles:
 - Example: collisions.
 - simplest algorithm is $O(n^2)$: look at all pairs to see if they collide.
- Usual parallel model is domain decomposition of physical region in which particles are located
 - O(n/p) particles per processor if evenly distributed.

Parallelism in Nearby Forces

- Challenge 1: interactions of particles near processor boundary:
 - need to communicate particles near boundary to neighboring processors.
 - Low surface to volume ratio means low communication.
 - » Use squares, not slabs

Communicate particles in boundary region to neighbors

Need to check for collisions between regions

Jim Demmel

Parallelism in Nearby Forces

- Challenge 2: load imbalance, if particles cluster:
 - galaxies, electrons hitting a device wall.
- To reduce load imbalance, divide space unevenly.
 - Each region contains roughly equal number of particles.
 - Quad-tree in 2D, Oct-tree in 3D.

Example: each square contains at most 3 particles

Parallelism in Far-Field Forces

- Far-field forces involve all-to-all interaction and therefore communication.
- Force depends on all other particles:
 - Examples: gravity, protein folding
 - Simplest algorithm is $O(n^2)$ as in S&F 2, 4, 5.
 - Just decomposing space does not help since every particle needs to "visit" every other particle.

Implement by rotating particle sets.

- Keeps processors busy
- All processors eventually see all particles
- Use more clever algorithms to communicate less
- Use even more clever algorithms to beat $O(n^2)$.

8/20/2013

Jim Demmel

Far-field Forces: O(n log n) or O(n), not O(n²)

- Based on approximation:
 - Settle for the answer to just 3 digits, or just 15 digits ...
- Two approaches
 - "Particle-Mesh"
 - » Approximate by particles on a regular mesh
 - » Exploit structure of mesh to solve for forces fast (FFT)
 - "Tree codes" (Barnes-Hut, Fast-Multipole-Method)
 - » Approximate clusters of nearby particles by single "metaparticles"
 - » Only need to sum over (many fewer) metaparticles

LUMPED SYSTEMS - ODES

8/20/2013

Jim Demmel

System of Lumped Variables

A

- Many systems are approximated by
 - System of "lumped" variables.
 - Each depends on continuous parameter (usually time).
- Example -- circuit:
 - approximate as graph.
 - » edges are wires
 - » nodes are connections between 2 or more wires.
 - » each edge has resistor, capacitor, inductor or voltage source.
 - system is "lumped" because we are not computing the voltage/current at every point in space along a wire, just endpoints.
 - Variables related by Ohm's Law, Kirchoff's Laws, etc.
- Forms a system of ordinary differential equations (ODEs)
 - Differentiated with respect to time
 - Variant: ODEs with some constraints
 - » Also called DAEs, Differential Algebraic Equations

Circuit Example

- State of the system is represented by
 - $v_n(t)$ node voltages
 - i_b(t) branch currents
 - $v_b(t)$ branch voltages
- Equations include
 - Kirchoff's current
 - Kirchoff's voltage
 - Ohm's law
 - Capacitance
 - Inductance

 $\begin{pmatrix} 0 & A & 0 \\ A' & 0 & -I \\ 0 & R & -I \\ 0 & -I & C^* d/dt \end{pmatrix}^* \begin{pmatrix} v_n \\ i_b \\ v_b \end{pmatrix} = \begin{pmatrix} 0 \\ S \\ 0 \\ 0 \\ 0 \end{pmatrix}$

L*d/dt

• A is sparse matrix, representing connections in circuit

0

One column per branch (edge), one row per node (vertex) with +1 and
 -1 in each column at rows indicating end points

 \rangle all at time t

• Write as single large system of ODEs or DAEs

Jim Demmel

0

Structural Analysis Example

- Another example is structural analysis in civil engineering:
 - Variables are displacement of points in a building.
 - Newton's and Hook's (spring) laws apply.
 - Static modeling: exert force and determine displacement.
 - Dynamic modeling: apply continuous force (earthquake).
 - Eigenvalue problem: do the resonant modes of the building match an earthquake

OpenSees project in CEE at Berkeley looks at this section of 880, among others

8/20/2013

Jim Demmel

Star Wars - The Force Unleashed...

graphics.cs.berkeley.edu/papers/Parker-RTD-2009-08/

8/20/2013

Jim Demmel

Solving ODEs

- In these examples, and most others, the matrices are sparse:
 - i.e., most array elements are 0.
 - neither store nor compute on these 0's.
 - Sparse because each component only depends on a few others
- Given a set of ODEs, two kinds of questions are:
 - Compute the values of the variables at some time t
 - » Explicit methods
 - » Implicit methods
 - Compute modes of vibration
 - » Eigenvalue problems

Solving ODEs

- Suppose ODE is $x'(t) = A \cdot x(t)$, where A is a sparse matrix
 - Discretize: only compute x(i·dt) = x[i] at i=0,1,2,...
 - ODE gives x'(t) = slope at t, and so x[i+1] \approx x[i] + dt·slope
- Explicit methods (ex: Forward Euler)
 - Use slope at t = i·dt, so slope = A·x[i].
 - x[i+1] = x[i] + dt·A·x[i], i.e. sparse matrix-vector multiplication.
- Implicit methods (ex: Backward Euler)
 - Use slope at t = (i+1)·dt, so slope = A·x[i+1].
 - Solve x[i+1] = x[i] + dt·A·x[i+1] for x[i+1] = (I dt·A)⁻¹ · x[i], i.e. solve a sparse linear system of equations for x[i+1]

Tradeoffs:

- Explicit: simple algorithm but may need tiny time steps dt for stability
- Implicit: more expensive algorithm, but can take larger time steps dt
- Modes of vibration eigenvalues of A
 - Algorithms also either multiply $A \cdot x$ or solve $y = (I d \cdot A) \cdot x$ for x

CONTINUOUS SYSTEMS -PDES

8/20/2013

Jim Demmel

Continuous Systems - PDEs

Examples of such systems include

- Elliptic problems (steady state, global space dependence)
 - Electrostatic or Gravitational Potential: Potential(position)
- Hyperbolic problems (time dependent, local space dependence):
 - Sound waves: Pressure(position, time)
- Parabolic problems (time dependent, global space dependence)
 - Heat flow: Temperature(position, time)
 - Diffusion: Concentration(position, time)

Global vs Local Dependence

- Global means either a lot of communication, or tiny time steps
- Local arises from finite wave speeds: limits communication

Many problems combine features of above

- Fluid flow: Velocity, Pressure, Density(position, time)
- Elasticity: Stress, Strain(position, time)

Implicit Solution of the 1D Heat Equation

- Discretize time and space using implicit approach (Backward Euler) to approximate time derivative: (u(x,t+δ) - u(x,t))/dt = C·(u(x-h,t+δ) - 2·u(x,t+δ) + u(x+h, t+δ))/h²
- Let $z = C \cdot \delta/h^2$ and discretize variable x to j·h, t to i· δ , and u(x,t) to u[j,i]; solve for u at next time step: $(I + z \cdot L) \cdot u[:, i+1] = u[:,i]$ $\begin{pmatrix} 2 & -1 \end{pmatrix}$
- I is identity and
 L is Laplacian
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 L =
 <liL =
 L =
 L =
 <liL =<
- Solve sparse linear system again

2

2D Implicit Method

- A
- Similar to the 1D case, but the matrix L is now

- Multiplying by this matrix (as in the explicit case) is simply nearest neighbor computation on 2D mesh.
- To solve this system, there are several techniques.

8/20/2013

Algorithms for Solving Ax=b (N vars)

A	lgorithm	Serial	PRAM	Memory	#Procs
•	Dense LU	N ³	N	N ²	N ²
•	Band LU	N ²	N	N ^{3/2}	Ν
•	Jacobi	N ²	N	Ν	Ν
•	Explicit Inv.	N ²	log N	N ²	N ²
•	Conj.Gradients	N ^{3/2}	N ^{1/2} *log N	N	N
•	Red/Black SOR	N ^{3/2}	N ^{1/2}	N	N
•	Sparse LU	N ^{3/2}	N ^{1/2}	N*log N	N
•	FFT	N*log N	log N	N	N
•	Multigrid	N	log² N	N	N
•	Lower bound	N	log N	Ν	

All entries in "Big-Oh" sense (constants omitted) PRAM is an idealized parallel model with zero cost communication Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997. Algorithms for 2D (3D) Poisson Equation (N = n² (n³) vars)

A	lgorithm :	Serial	PRAM	Memory	#Procs
•	Dense LU	N ³	N	N ²	N ²
•	Band LU	N ² (N ^{7/3})	N	N ^{3/2} (N ^{5/3})	N(N ^{4/3})
•	Jacobi	N ² (N ^{5/3})	N (N ^{2/3})	N	N
•	Explicit Inv.	N ²	log N	N ²	N ²
•	Conj.Gradients	N ^{3/2} (N ^{4/3})	N ^{1/2} (1/3) *log N	N	N
•	Red/Black SOR	2 N ^{3/2} (N ^{4/3})	N ^{1/2} (N ^{1/3})	N	N
•	Sparse LU N	N ^{3/2} (N ²)	N ^{1/2}	N*log N	N(N ^{4/3})
•	FFT	N*log N	log N	N	N
•	Multigrid	N	log ² N	N	N
•	Lower bound	N	log N	N	

PRAM is an idealized parallel model with ∞ procs, zero cost communication Reference: J.D., Applied Numerical Linear Algebra, SIAM, 1997. For more information: take Ma221 this semester! 8/20/2013 Jim Demmel

Algorithms and Motifs

A	lgorithm	Motifs
•	Dense LU	Dense linear algebra
•	Band LU	Dense linear algebra
•	Jacobi	(Un)structured meshes, Sparse Linear Algebra
•	Explicit Inv.	Dense linear algebra
•	Conj.Gradients	(Un)structured meshes, Sparse Linear Algebra
•	Red/Black SOR	(Un)structured meshes, Sparse Linear Algebra
•	Sparse LU	Sparse Linear Algebra
•	FFT	Spectral
•	Multigrid	(Un)structured meshes, Sparse Linear Algebra

Irregular mesh: NASA Airfoil in 2D

Pattern of A after LU

Sources: 42

Jim Demmel

8/20/2013

Source of Irregular Mesh: Finite Element Model of Vertebra

Source: M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos, A. Gupta

8/20/2013

Jim Demmel

Methods: µFE modeling (Gordon Bell Prize, 2004

Micro-Computed Tomography

 μCT @ 22 μm resolution

Up to 537M unknowns

8/20/2013

Jim Demmel

Adaptive Mesh Refinement (AMR)

- Adaptive mesh around an explosion
 - Refinement done by estimating errors; refine mesh if too large
- Parallelism
 - Mostly between "patches," assigned to processors for load balance
 - May exploit parallelism within a patch
- Projects:
 - Titanium (http://titanium.cs.berkeley.edu)
 - Chombo (P. Colella, LBL), KeLP (S. Baden, UCSD), J. Bell, LBL

Summary: Some Common Problems

- Find parallelism and locality
- Load Balancing
 - Statically Graph partitioning
 - » Discrete systems
 - » Sparse matrix vector multiplication
 - Dynamically if load changes significantly during job
- Linear algebra
 - Solving linear systems (sparse and dense)
 - Eigenvalue problems will use similar techniques
 - Sometimes formulated as structured/unstructured meshes
- Fast Particle Methods
 - $O(n \log n)$ instead of $O(n^2)$