PARLab Parallel Boot Camp

Parallel Computing Motifs
(aka Computational Patterns)

Jim Demmel
EECS and Mathematics
University of California, Berkeley
Outline

• Productive parallel computing depends on recognizing and exploiting known useful patterns
  – Design, computational, and mathematical
• Recall the 7 (then 13) Motifs
• Optimizing (some of) the 7 motifs
  – To minimize time, minimize communication, not necessarily flops
    • Time = \#flops * time_per_flop + \#words_sent /BW + \#messages * latency
    • Time_per_flop \ll 1/BW \ll latency, growing apart exponentially
  – Best parallel algorithm not always from parallelizing the best sequential algorithm
    • Want \#messages \ll \#word_sent \ll \#flops
  – Autotuning to explore large design spaces
• See CS267 for details
  – www.cs.berkeley.edu/~demmel/cs267_Spr09
Phil Colella (LBL) identified 7 kernels of which most simulation and data-analysis programs are composed:

1. Dense Linear Algebra
   - Ex: Solve $Ax=b$ or $Ax = \lambda x$ where $A$ is a dense matrix

2. Sparse Linear Algebra
   - Ex: Solve $Ax=b$ or $Ax = \lambda x$ where $A$ is a sparse matrix (mostly zero)

3. Operations on Structured Grids
   - Ex: $A_{new}(i,j) = 4*A(i,j) - A(i-1,j) - A(i+1,j) - A(i,j-1) - A(i,j+1)$

4. Operations on Unstructured Grids
   - Ex: Similar, but list of neighbors varies from entry to entry

5. Spectral Methods
   - Ex: Fast Fourier Transform (FFT)

6. Particle Methods
   - Ex: Compute electrostatic forces on $n$ particles

7. Monte Carlo
   - Ex: Many independent simulations using different inputs
6 additional motifs of parallel computing

• By examining a variety of applications, ParLab identified 6 more common underlying computational patterns:

1. Combinational Logic
   • Ex: Circuits(!), encryption
2. Finite State Machine
   • Ex: Compiling, discrete event simulation
3. Graph Traversal
   • Ex: Natural language processing, sorting
4. Dynamic Programming
   • Ex: Data base query optimization, machine learning
5. Backtrack and Branch & Bound
   • Ex: Constraint satisfactions, games (like chess)
6. Graphical Models
   • Ex: Hidden Markov Models, Bayesian Networks

• For more examples and analysis, see “Berkeley View” report:
  www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
Choose your high level structure – what is the structure of my application? Guided expansion

Pipe-and-filter
Agent and Repository
Process Control
Event based, implicit invocation

Model-view controller
Iterator
Map reduce
Layered systems
Arbitrary Static Task Graph

Task Decomposition ↔ Data Decomposition
Group Tasks  Order groups  data sharing  data access

Graph Algorithms
Dynamic Programming
Dense Linear Algebra
Sparse Linear Algebra
Unstructured Grids
Structured Grids

Graphical models
Finite state machines
Backtrack Branch and Bound
N-Body methods
Circuits
Spectral Methods

Choose your high level architecture - Guided decomposition

Productivity Layer

Event Based
Divide and Conquer
Data Parallelism
Geometric Decomposition
Pipeline
Discrete Event

Task Parallelism
Graph algorithms

Digital Circuits

Refine the structure - what concurrent approach do I use? Guided re-organization

Utilize Supporting Structures – how do I implement my concurrency? Guided mapping

Fork/Join
CSP
Distributed
Array Shared-Data
Shared Queue
Shared Hash Table

Master/worker
Loop Parallelism
BSP

Implementation methods – what are the building blocks of parallel programming? Guided implementation

Thread Creation/destruction
Process/Creation/destruction
Message passing
Collective communication
Speculation
Transactional memory
Barriers
Semaphores

James Demmel
What you (might) want to know about a motif

• How to use it
  – What problems does it solve
  – How to choose solution approach, if more than one

• How to find the best software available now
  – Best: fastest? most accurate? fewest keystrokes?

• How are the best implementations built?
  – Algorithms
  – Autotuning

• Open problems, current work, thesis problems...
## Algorithms for 2D (3D) Poisson Equation (N = n^2 (n^3) vars)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Serial</th>
<th>PRAM</th>
<th>Memory</th>
<th>#Procs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense LU</td>
<td>N^3</td>
<td>N</td>
<td>N^2</td>
<td>N^2</td>
</tr>
<tr>
<td>Band LU</td>
<td>N^2 (N^{7/3})</td>
<td>N</td>
<td>N^{3/2} (N^{5/3})</td>
<td>N (N^{4/3})</td>
</tr>
<tr>
<td>Jacobi</td>
<td>N^2 (N^{5/3})</td>
<td>N (N^{2/3})</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Explicit Inv.</td>
<td>N^2</td>
<td>log N</td>
<td>N^2</td>
<td>N^2</td>
</tr>
<tr>
<td>Conj.Gradients</td>
<td>N^{3/2} (N^{4/3})</td>
<td>N^{1/2} (1/3) *log N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Red/Black SOR</td>
<td>N^{3/2} (N^{4/3})</td>
<td>N^{1/2} (N^{1/3})</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Sparse LU</td>
<td>N^{3/2} (N^2)</td>
<td>N^{1/2}</td>
<td>N*log N (N^{4/3})</td>
<td>N</td>
</tr>
<tr>
<td>FFT</td>
<td>N*log N</td>
<td>log N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Multigrid</td>
<td>N</td>
<td>log^2 N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Lower bound</td>
<td>N</td>
<td>log N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

PRAM is an idealized parallel model with ∞ procs, zero cost communication.


For more details, Ma221 offered this semester!
Need Parallelism and Locality for Performance

- Moving data most expensive operation
  - Between cache and DRAM, or processors on a network...
- Goal: algorithms that minimize data movement, as well as parallelize
- Recall simple cost model
  - Time = #flops \cdot \gamma + \#words\_moved \cdot \beta + \#messages \cdot \alpha
  - \gamma = \text{time\_per\_flop}, \beta = 1/\text{bandwidth}, \alpha = \text{latency}
  - \alpha \gg \beta \gg \gamma, gaps growing exponentially over time
- If \#words\_moved \approx \#flops in an algorithm, it will be limited by bandwidth
  - Seek algorithms where \#flops \gg \#words\_moved \gg \#messages
  - Notation: \textit{q} \equiv \textit{computational intensity} = \#flops/\#words\_moved

8/21/2009 James Demmel

Motifs: 8
DENSE LINEAR ALGEBRA MOTIF
Brief history of (Dense) Linear Algebra software (1/6)

• In the beginning was the do-loop...
  – Libraries like EISPACK (for eigenvalue problems)

• Then the BLAS (1) were invented (1973-1977)
  – Standard library of 15 operations (mostly) on vectors
    • Ex: $y = \alpha \cdot x + y$ (“AXPY”), dot product, $(\sum x_i^2)^{1/2}$, $x = \alpha \cdot x$, etc
  – Goals
    • Common pattern to ease programming, readability
    • Robustness, via careful coding (avoiding over/underflow)
    • Portability + efficiency via machine specific implementations

• Used in libraries like LINPACK (for linear systems)
  • Source of the name “LINPACK Benchmark” (not the code!)

• Why BLAS 1? They do $O(n^1)$ ops on $O(n^1)$ data
  • Ex: Computational intensity = $q = 2/3$ for AXPY
  • Limited by memory speed
• So the BLAS-1 weren’t fast enough
  – Computational intensity too low, so data movement was bottleneck

• So the BLAS-2 were invented (1984-1986)
  – Standard library of 25 operations (mostly) on matrix/vector pairs
    • Ex: $y = \alpha \cdot A \cdot x + \beta \cdot y$ (“GEMV”), $A = A + \alpha \cdot x \cdot y^T$ (“GER”), $y = T^{-1} \cdot x$ (“TRSV”)
  – Why BLAS 2? They do $O(n^2)$ ops on $O(n^2)$ data
  – So $q$=computational intensity still just $\sim (2n^2)/(n^2) = 2$
    • Was OK for vector machines, but not for machine with caches, since $q$ still just a small constant
• The next step: BLAS-3 (1987-1988)
  – Standard library of 9 operations (mostly) on matrix/matrix pairs
    • Ex: $C = \alpha \cdot A \cdot B + \beta \cdot C$ (“GEMM”), $C = \alpha \cdot A \cdot A^T + \beta \cdot C$ (“SYRK”), $C = T^{-1} \cdot B$ (“TRSM”)
  – Why BLAS 3? They do $O(n^3)$ ops on $O(n^2)$ data
  – So computational intensity $q = (2n^3)/(4n^2) = n/2$ – big at last!
    • Tuning opportunities machines with caches, other mem. hierarchy levels

• How much BLAS1/2/3 code so far?
  – See www.netlib.org/blas;
  – Reference implementation only, not optimized
    • Ex: Just usual 3 nested loops for GEMM
  – Source: 142 routines, 31K LOC, Testing: 28K LOC
  – How fast is the reference implementation?
Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

Reference Implementation; Full compiler opt.

Optimized Implementations:
Vendor (Sun) and Autotuned (PHiPAC)

Peak = 330 MFlops.
Naive n x n Matrix Multiply $C = C + A \times B$

with Fast and Slow Memories

for $i = 1$ to $n$
  for $j = 1$ to $n$
    for $k = 1$ to $n$

    $C(i,j) = C(i,j) + A(i,k) \times B(k,j)$

8/21/2009
James Demmel
Naive n x n Matrix Multiply C=C+A*B with Fast and Slow Memories

for i = 1 to n
  for j = 1 to n
    {read C(i,j) from slow to fast memory: n^2 words moved}
    for k = 1 to n
      {read A(i,k) from slow to fast memory : n^3 words moved}
      {read B(k,j) from slow to fast memory : n^3 words moved}
      C(i,j) = C(i,j) + A(i,k) * B(k,j)  ... update C(i,j) in fast memory
    {write C(i,j) from fast to slow memory : n^2 words moved}
  ... 2n^2 + 2n^3 words moved altogether, so computational intensity just \approx 1
Blocked $n \times n$ Matrix Multiply $C = C + A \times B$

with Fast and Slow Memories

Each $n \times n$ matrix consists of $b \times b$ blocks, numbered, eg, $C(1,1)$ to $C(n/b,n/b)$

for $i = 1$ to $n/b$

for $j = 1$ to $n/b$

for $k = 1$ to $n/b$

$$C(i,j) = C(i,j) + A(i,k) \times B(k,j) \quad \ldots \quad b \times b \text{ matmul, all in fast memory}$$
Blocked $n \times n$ Matrix Multiply $C = C + A \times B$

with Fast and Slow Memories

Each $n \times n$ matrix consists of $b \times b$ blocks, numbered, eg, $C(1,1)$ to $C(n/b, n/b)$

for $i = 1$ to $n/b$

for $j = 1$ to $n/b$

{read $b \times b$ block $C(i,j)$ from slow to fast memory: $n^2$ words moved}

for $k = 1$ to $n/b$

{read $b \times b$ block $A(i,k)$ from slow to fast memory: $n^3/b$ words moved}

{read $b \times b$ block $B(k,j)$ from slow to fast memory: $n^3/b$ words moved}

$C(i,j) = C(i,j) + A(i,k) \times B(k,j)$ ... $b \times b$ matmul, all in fast memory

{write $b \times b$ block $C(i,j)$ from fast to slow memory: $n^2$ words moved}

... $2n^2 + 2n^3/b$ words moved altogether, so computational intensity grows to $\approx b$
Blocked $n \times n$ Matrix Multiply $C = C + A \times B$

with Fast and Slow Memories

Each $n \times n$ matrix consists of $b \times b$ blocks, numbered, eg, $C(1,1)$ to $C(n/b, n/b)$

for $i = 1$ to $n/b$

for $j = 1$ to $n/b$

{read $b \times b$ block $C(i,j)$ from slow to fast memory: $n^2$ words moved}

for $k = 1$ to $n/b$

{read $b \times b$ block $A(i,k)$ from slow to fast memory: $n^3/b$ words moved}

{read $b \times b$ block $B(k,j)$ from slow to fast memory: $n^3/b$ words moved}

$C(i,j) = C(i,j) + A(i,k) \times B(k,j)$ ... $b \times b$ matmul, all in fast memory

{write $b \times b$ block $C(i,j)$ from fast to slow memory: $n^2$ words moved}

... $2n^2 + 2n^3/b$ words moved altogether, so computational intensity grows to $\approx b$

• The bigger the block size $b$, the fewer words moved; how big can $b$ be?
• We are assuming 3 $b \times b$ blocks fit in fast memory
• So if fast memory has size $M$, we need $3b^2 \leq M$, or #words moved $\geq 2 \cdot 3^{1/2} \cdot n^3 / M^{1/2}$
• Thm (Hong & Kung, 1981) : moving $\Omega(n^3 / M^{1/2})$ words is a lower bound
  • True only for classical matmul with $n^3$ multiplies, not Strassen etc.
How hard is hand-tuning, anyway?

- Results of 22 student teams trying to tune matrix-multiply, in CS267 Spr09
- Students given “blocked” code to start with
  - Still hard to get close to vendor tuned performance (ACML)
- For more discussion, see www.cs.berkeley.edu/~volkov/cs267.sp09/hw1/results/
How hard is hand-tuning, anyway?
A 2-D slice of a 3-D register-tile search space. The dark blue region was pruned.
(Platform: Sun Ultra-IiI, 333 MHz, 667 Mflop/s peak, Sun cc v5.0 compiler)
Autotuning DGEMM with ATLAS (n = 500)

ATLAS is faster than all other portable BLAS implementations and it is comparable with machine-specific libraries provided by the vendor.

ATLAS written by C. Whaley, inspired by PHiPAC, by Asanovic, Bilmes, Chin, D.
BLAS 1/2/3 speeds on IBM RS6000/590

BLAS 3 (n-by-n matrix matrix multiply) vs BLAS 2 (n-by-n matrix vector multiply) vs BLAS 1 (saxpy of n vectors)

Peak = 266 MFlops

BLAS 3

BLAS 2

BLAS 1

RS2: Level 1, 2 and 3 BLAS

Order of vectors/matrices

Speed in Megaflops

0

50

100

150

200

250

300

8/21/2009

James Demmel

Motifs: 23
Brief history of (Dense) Linear Algebra software (4/6)

• LAPACK – “Linear Algebra PACKage” - uses BLAS-3 (1989 – now)
  – Ex: Obvious way to express Gaussian Elimination (GE) is adding multiples of each row to other rows – BLAS-1
    • Need to reorganize GE (and everything else) to use BLAS-3 instead
  – Contents of LAPACK (summary)
    • Algorithms we can turn into (nearly) 100% BLAS 3 for large n
      – Linear Systems: solve $Ax=b$ for $x$
      – Least Squares: choose $x$ to minimize $\sqrt{\sum_i r_i^2}$ where $r=Ax-b$
    • Algorithms that are only up to ~50% BLAS 3, rest BLAS 1 & 2
      – “Eigenproblems”: Find $\lambda$ and $x$ where $Ax = \lambda x$
      – Singular Value Decomposition (SVD): $A^TAx=\sigma^2x$
    • Error bounds for everything
    • Lots of variants depending on $A$’s structure (banded, $A=A^T$, etc)
    • Source: 1582 routines, 490K LOC, Testing: 352K LOC
    – But can we move data less, and go faster?
• Is LAPACK parallel?
  – Only if the BLAS are parallel (possible in shared memory)

• ScaLAPACK – “Scalable LAPACK” (1995 – now)
  – For distributed memory – uses MPI
  – More complex data structures, algorithms than LAPACK
    • Only subset of LAPACK’s functionality available
    • Work in progress (contributions welcome!)
  – All at www.netlib.org/scalapack
Different Parallel Data Layouts for Matrices

1) 1D Column Blocked Layout

2) 1D Column Cyclic Layout

3) 1D Column Block Cyclic Layout

4) Row versions of the previous layouts

5) 2D Row and Column Blocked Layout

6) 2D Row and Column Block Cyclic Layout

Bad load balance on many submatrices

Generalizes others

Best load balance on submatrices
Success Stories for Sca/LAPACK

• Widely used
  – Adopted by Mathworks, Cray, Fujitsu, HP, IBM, IMSL, Intel, NAG, NEC, SGI, ...
  – >100M web hits (in 2009, 56M in 2006) @ Netlib (incl. CLAPACK, LAPACK95)

• New science discovered through the solution of dense matrix systems
  – Nature article on the flat universe used ScaLAPACK
  – 1998 Gordon Bell Prize

Cosmic Microwave Background Analysis, BOOMERanG collaboration, MADCAP code (Apr. 27, 2000).
Brief history/future of (Dense) Linear Algebra software (6/6)

• Extensions for multicore
  – LAPACK can use parallel BLAS, ScaLAPACK can use shared-memory MPI, but could be faster...
  – PLASMA – Parallel Linear Algebra for Scalable Multicore Architectures
    • Release 2.0.0 at icl.cs.utk.edu/plasma/

• Extensions for GPUs
  – “Benchmarking GPUs to tune Dense Linear Algebra”
    • Best Student Paper Prize at SC08 (Vasily Volkov)
    • Paper, slides and code at www.cs.berkeley.edu/~volkov
  – MAGMA – Matrix Algebra on GPU and Multicore Architectures
    • Release 0.1 at icl.cs.utk.edu/magma/

• Communication-minimizing linear algebra
  – Are there lower bounds on data movement for all linear algebra?
  – Are there algorithms that achieve them? Are they in libraries?

• How much code generation can we automate?
  – MAGMA, and FLAME (www.cs.utexas.edu/users/flame/)
PLASMA: Expressing Parallelism with a DAG

- DAG = Directed Acyclic Graph, of tasks
- Tasks are multiplying submatrices, etc.
- Sample DAG for Cholesky with 5 blocks per row/column

- Can process DAG in any order respecting dependencies
- What is the best schedule?
  - Static vs dynamic?
  - Programmer builds DAG vs compiler or run-time system?
  - Build and schedule whole DAG (size = $O((n/b)^3)$) or just “front”
  - Use locality hints?

DAG courtesy of Jakub Kurzak, UTK
Cilk ([www.cilk.com](http://www.cilk.com)): programmer defined spawn and sync

SMPSs ([www.bsc.es](http://www.bsc.es)): compiler-based with annotations of argument dependencies

PLASMA: static schedule supplied by programmer

Measured Results for Tiled Cholesky

- Measured on Intel Tigerton 2.4 GHz  
  Slide courtesy of Jakub Kurzak, UTK

Cores (1-16) -> Time

8/21/2009 James Demmel

Motifs: 30
More Measured Results for Tiled Cholesky

- PLASMA (static pipeline) – best
- SMPSs – somewhat worse
- Cilk 2D – inferior
- Cilk 1D – still worse

quad-socket, quad-core (16 cores total) Intel Tigerton 2.4 GHz
3 Implementations of LU factorization
Quad core w/2 sockets per board, w/ 8 Threads

1. LAPACK (BLAS Fork-Join Parallelism)
2. ScaLAPACK (Mess Pass using mem copy)
3. DAG Based (PLASMA)

Source: Jack Dongarra

8 Core Experiments

Source: Jack Dongarra

8/21/2009
James Demmel
Scheduling on Multicore – Next Steps

• PLASMA 2.0.0 released
  – Just Cholesky, QR, LU, using static scheduling
  – LU does not do partial pivoting – Stability?
  – ict.cs.utk.edu/plasma/

• Future of PLASMA
  – Add dynamic scheduling, similar to SMPSs
    • DAGs for eigenproblems are too complicated to do by hand
  – Depend on user annotations and API, not compiler
  – Still assume homogeneity of available cores
    • Heterogeneous case: MAGMA
Dense Linear Algebra on GPUs

• Source: Vasily Volkov’s SC08 paper

• New challenges
  – More complicated memory hierarchy
  – Not like “L1 inside L2 inside ...”,
    • Need to choose which memory to use carefully
    • Need to move data explicitly
  – GPU does some operations much faster than CPU, but not all
  – CPU and GPU like different data layouts
Goal: understand bottlenecks in the dense linear algebra kernels
  - Requires detailed understanding of the GPU architecture
  - Result 1: New coding recommendations for high performance on GPUs
  - Result 2: New, fast variants of LU, QR, Cholesky, other routines

NVIDIA released CUBLAS 1.0 in 2007: BLAS for GPUs
- Allows easy port of LAPACK to GPU (consider single precision only)

2007 results not so great in matrix-matrix multiply
disappointing performance in (naive) LU factorization
impressive sheer compute power
(Some new) NVIDIA coding recommendations

- Minimize communication with CPU memory
- Keep as much data in registers as possible
  - Largest, fastest on-GPU memory
  - Vector-only operations
- Use as little shared memory as possible
  - Smaller, slower than registers; use for communication, sharing only
  - Speed limit: 66% of peak with one shared mem argument
- Use vector length VL=64, not max VL = 512
  - Strip mine longer vectors into shorter ones
  - Avoids wasting memory to replicate scalars

- Final matmul code similar to Cray X1 or IBM 3090 vector codes
Optimizing Matrix Factorizations on GPUs

• Use GPU to compute matrix-matrix multiplies only
  – Do everything else, like factorizing panels, on the CPU
• Use look-ahead to overlap computations on CPU and GPU
• Batch Pivoting
• Use row-major layout on GPU, column-major on CPU
  – Requires extra (but fast) matrix transpose for each CPU-GPU transfer
• Substitute triangular solves of $LX=B$ by TRSM with multiply by $L^{-1}$
  – At worst squares pivot growth factor in error bound (assume small anyway)
  – Can check $\|L^{-1}\|$, use TRSM if too large
• Use two-level and variable size blocking as finer tuning
  – Thicker blocks impose lower bandwidth requirements in SGEMM
  – Variable size blocking improves CPU/GPU load balance

• Use column-cyclic layout when computing using two GPUs
  – Requires no data exchange between GPUs in pivoting
  – Cyclic layout is used on GPUs only so does not affect panel factorization
Our solution runs at ~50% of the system’s peak (shown on the right). It is bound by SGEMM that runs at 60% of the GPU-only peak.
Where does the time go?

- Time breakdown for LU on 8800 GTX

![Diagram showing time breakdown for LU on 8800 GTX](chart.png)
Importance of various optimizations on GPU

- Slowdown when omitting one of the optimizations on GTX 280
What we’ve achieved:

- Identified realistic peak speed of GPU architecture
- Achieved a large fraction of this peak in matrix multiply
- Achieved a large fraction of the matrix multiply rate in dense factorizations
Communication-Minimizing Linear Algebra

• Lower bounds on data movement for all linear algebra?

• Recall Thm (Hong,Kung,1981): Any sequential matmul doing $n^3$ multiplies must move $\Omega(n^3/M^{1/2})$ words between slow memory and fast memory of size $M$ (achieved by blocked matmul)

• Parallel Case: Thm (Irony,Tiskin,Toledo,2004): Any parallel matmul on $p$ processors with $O(n^2/p)$ memory/processor must move $\Omega(n^2/p^{1/2})$ words between processors (achieved by Cannon’s Alg.)
Communication-Minimizing Linear Algebra

- Can we attain lower bounds $\Omega(F/M^{1/2})$ on #words moved, and $\Omega(F/M^{3/2})$ on #messages?
- Not by algorithms in Sca/LAPACK
  - Except for Cholesky, with right block size
- But new (dense) algorithms do attain them!
  - Dense LU: need to abandon classical partial pivoting
    - Measured speedups up to 5.5x on Cray XT4 (1M x 150)
    - Predicted speedups up to 81x on IBM BG/Q
  - Dense QR: need to represent Q factor in new way
    - Measured speedups to to 8x on Intel Clovertown (1M x 10)
  - Eig and SVD: work in progress
- Sparse linear algebra:
  - some positive results in progress, lots of open questions
- See [www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-62.html](http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-62.html) for lower bounds, and references therein for algorithms
SPARSE LINEAR ALGEBRA MOTIF
Sparse Matrix Computations

• Similar problems to dense matrices
  – Ax=b, Least squares, Ax = \lambda x, SVD, ...

• But different algorithms!
  – Exploit structure: only store, work on nonzeros
  – Direct methods
    • LU, Cholesky for Ax=b, QR for Least squares
    • See crd.lbl.gov/~xiaoye/SuperLU/index.html for LU codes
    • See crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf for a survey of available serial and parallel sparse solvers
  – Iterative methods – for Ax=b, least squares, eig, SVD
    • Use simplest operation: Sparse-Matrix-Vector-Multiply (SpMV)
    • Krylov Subspace Methods: find “best” solution in space spanned by vectors generated by SpMVs
Choosing a Krylov Subspace Method for $Ax=b$

A symmetric?

$A^T$ available?

No

Storage Expensive?

No

Try GMRES

Yes

Try CGS, BiCGStab, or GMRES(k)

A well-conditioned?

No

Try QMR

Yes

A definite?

No

A well-conditioned?

No

Yes

Try CG on normal eqns.

Yes

A well-conditioned?

No

Try MINRES or Nonsymm. method

Yes

Largest/smallest eigenvalues known?

No

Try CG

Yes

Try CG with Chebyshev acceleration

• All depend on SpMV
• See www.netlib.org/templates for $Ax=b$
• See www.cs.ucdavis.edu/~bai/ET/contents.html for $Ax=\lambda x$ and SVD
Sparse Outline

• Approaches to Automatic Performance Tuning
• Results for sparse matrix kernels
  – Sparse Matrix Vector Multiplication (SpMV)
  – Sequential and Multicore results
• OSKI = Optimized Sparse Kernel Interface
• Tuning Entire Sparse Solvers
Approaches to Automatic Performance Tuning

• Goal: Let machine do hard work of writing fast code

• Why is tuning dense BLAS “easy”?
  – Can do the tuning off-line: once per architecture, algorithm
  – Can take as much time as necessary (hours, a week...)
  – At run-time, algorithm choice may depend only on few parameters (matrix dimensions)

• Can’t always do tuning off-line
  – Algorithm and implementation may strongly depend on data only known at run-time
  – Ex: Sparse matrix nonzero pattern determines both best data structure and implementation of Sparse-matrix-vector-multiplication (SpMV)
    – Part of search for best algorithm must be done (very quickly!) at run-time

• Tuning FFTs and signal processing
  – Seems off-line, but maybe not
Source: Accelerator Cavity Design Problem (Ko via Husbands)
A Sparse Matrix You Use Every Day

Connectivity Matrix (stanford.edu+)

nz = 3105536 × 10^5
Matrix-vector multiply kernel: \( y(i) \leftarrow y(i) + A(i,j) \times x(j) \)

for each row \( i \)
  for \( k = \text{ptr}[i] \) to \( \text{ptr}[i+1] \)
  \( y[i] = y[i] + \text{val}[k] \times x[\text{ind}[k]] \)

Only 2 flops per 2 mem_refs:
Limited by getting data from memory
Example: The Difficulty of Tuning

- $n = 21200$
- $nnz = 1.5 \text{ M}$
- kernel: SpMV

- Source: NASA structural analysis problem
Example: The Difficulty of Tuning

- $n = 21200$
- $\text{nnz} = 1.5\ M$
- kernel: SpMV
- Source: NASA structural analysis problem
- $8 \times 8$ dense substructure: exploit this to limit #mem_refs
Speedups on Itanium 2: The Need for Search

Matrix #02-racfsky3.rue on Itanium 2 (900 MHz) [Ref=274.3 Mflop/s]

Best: 4x2

Reference
<table>
<thead>
<tr>
<th>Column Block Size (c)</th>
<th>Power3 - 17%</th>
<th>Power4 - 16%</th>
<th>Itanium 1 - 8%</th>
<th>Itanium 2 - 33%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.37</td>
<td>1.28</td>
<td>1.52</td>
<td>1.75</td>
</tr>
<tr>
<td>2</td>
<td>1.27</td>
<td>1.34</td>
<td>1.59</td>
<td>1.88</td>
</tr>
<tr>
<td>3</td>
<td>1.33</td>
<td>1.33</td>
<td>1.84</td>
<td>2.04</td>
</tr>
<tr>
<td>4</td>
<td>1.31</td>
<td>1.32</td>
<td>2.00</td>
<td>2.27</td>
</tr>
<tr>
<td>5</td>
<td>1.20</td>
<td>1.27</td>
<td>2.24</td>
<td>2.58</td>
</tr>
<tr>
<td>6</td>
<td>1.15</td>
<td>1.25</td>
<td>2.47</td>
<td>2.91</td>
</tr>
<tr>
<td>7</td>
<td>1.27</td>
<td>1.29</td>
<td>2.52</td>
<td>3.01</td>
</tr>
<tr>
<td>8</td>
<td>1.32</td>
<td>1.31</td>
<td>2.52</td>
<td>3.22</td>
</tr>
<tr>
<td>9</td>
<td>1.34</td>
<td>1.31</td>
<td>2.58</td>
<td>3.43</td>
</tr>
<tr>
<td>10</td>
<td>1.34</td>
<td>1.33</td>
<td>2.64</td>
<td>3.64</td>
</tr>
<tr>
<td>11</td>
<td>1.33</td>
<td>1.33</td>
<td>2.70</td>
<td>3.85</td>
</tr>
<tr>
<td>12</td>
<td>1.32</td>
<td>1.33</td>
<td>2.76</td>
<td>4.06</td>
</tr>
</tbody>
</table>

- **Power3**: 17% utilization, 252 Mflop/s
- **Power4**: 16% utilization, 820 Mflop/s
- **Itanium 1**: 8% utilization, 247 Mflop/s
- **Itanium 2**: 33% utilization, 1.2 Gflop/s
Another example of tuning challenges

- More complicated non-zero structure in general
- \( N = 16614 \)
- \( \text{NNZ} = 1.1 \text{M} \)
• More complicated non-zero structure in general

• $N = 16614$
• $NNZ = 1.1M$
3x3 blocks look natural, but...

- More complicated non-zero structure in general
- Example: 3x3 blocking
  - Logical grid of 3x3 cells
- But would lead to lots of “fill-in”
Extra Work Can Improve Efficiency!

- More complicated non-zero structure in general
- Example: 3x3 blocking
  - Logical grid of 3x3 cells
  - Fill-in explicit zeros
  - Unroll 3x3 block multiplies
  - “Fill ratio” = 1.5

(688 true non-zeros) + (383 explicit zeros) = 1071 nz
Selecting Register Block Size r x c

- **Off-line benchmark**
  - Precompute $Mflops(r,c)$ using dense A for each r x c
  - Once per machine/architecture

- **Run-time “search”**
  - Sample A to estimate $Fill(r,c)$ for each r x c
  - Control cost = $O(s \cdot nnz)$ by controlling fraction $s \in [0,1]$ sampled
  - Control $s$ automatically by computing statistical confidence intervals, by monitoring variance

- **Run-time heuristic model**
  - Choose r, c to minimize $\text{time} \sim \frac{Fill(r,c)}{Mflops(r,c)}$

- **Cost of tuning**
  - Lower bound: convert matrix in 5 to 40 unblocked SpMVs
  - Heuristic: 1 to 11 SpMVs

- **Tuning only useful when we do many SpMVs**
  - Common case, eg in sparse solvers
NOTE: “Fair” flops used (ops on explicit zeros not counted as “work”)
Accuracy of the Tuning Heuristics [Itanium 2]
Example:
Bounds on Itanium 2

Upper bound counts only compulsory memory traffic

PAPI upper bound counts true traffic
Summary of Other Performance Optimizations

• Optimizations for SpMV
  – Register blocking (RB): up to 4x over CSR
  – Variable block splitting: 2.1x over CSR, 1.8x over RB
  – Diagonals: 2x over CSR
  – Reordering to create dense structure + splitting: 2x over CSR
  – Symmetry: 2.8x over CSR, 2.6x over RB
  – Cache blocking: 2.8x over CSR
  – Multiple vectors (SpMM): 7x over CSR
  – And combinations...

• Sparse triangular solve
  – Hybrid sparse/dense data structure: 1.8x over CSR

• Higher-level kernels
  – A·A^T·x, A^T·A·x: 4x over CSR, 1.8x over RB
  – A^2·x: 2x over CSR, 1.5x over RB
  – [A·x, A^2·x, A^3·x, .. , A^k·x] .... more to say later
Can we reorder the rows and columns to create dense blocks, to accelerate SpMV?
Post-RCM (Breadth-first-search) Reordering

Moving nonzeros nearer the diagonal should create dense block, but let's zoom in and see...
Here is the top 100x100 submatrix before RCM
“Microscopic” Effect of RCM Reordering

Before: Green + Red
After: Green + Blue

Here is the top 100x100 submatrix after RCM: red entries move to the blue locations. More dense blocks, but could be better, so let’s try reordering again, using TSP (Travelling Saleman Problem)
“Microscopic” Effect of Combined RCM+TSP Reordering

Before: Green + Red
After: Green + Blue

Here is the top 100x100 submatrix after RCM and TSP: red entries move to the blue locations. Lots of dense blocks, as desired!

Speedups (using symmetry too):

Itanium 2: 1.7x
Pentium 4: 2.1x
Power 4: 2.1x
Ultra 3: 3.3x
• Provides sparse kernels automatically tuned for user’s matrix & machine
  – BLAS-style functionality: SpMV, Ax & \( A^T y \), TrSV
  – Hides complexity of run-time tuning
  – Includes new, faster locality-aware kernels: \( A^T A x \), \( A^k x \)
• Faster than standard implementations
  – Up to 4x faster matvec, 1.8x trisolve, 4x \( A^T A *x \)
• For “advanced” users & solver library writers
  – Available as stand-alone library (OSKI 1.0.1h, 6/07)
  – Available as PETSc extension (OSKI-PETSc .1d, 3/06)
  – Bebop.cs.berkeley.edu/oski
• Future work: add multicore
How the OSKI Tunes (Overview)

Library Install-Time (offline) → Application Run-Time

1. Build for Target Arch.
   →
   Generated code variants

2. Benchmark
   →
   Benchmark data

1. Evaluate Models
   →
   2. Select Data Struct. & Code

Workload from program monitoring

Histories

Extensibility: Advanced users may write & dynamically add “Code variants” and “Heuristic models” to system.
How to Call OSKI: Basic Usage

• May gradually migrate existing apps
  – Step 1: “Wrap” existing data structures
  – Step 2: Make BLAS-like kernel calls

```c
int* ptr = ..., *ind = ...; double* val = ...; /* Matrix, in CSR format */
double* x = ..., *y = ...; /* Let x and y be two dense vectors */

/* Compute y = β·y + α·A·x, 500 times */
for( i = 0; i < 500; i++ )
    my_matmult( ptr, ind, val, α, x, β, y );
```
How to Call OSKI: Basic Usage

• May gradually migrate existing apps
  – Step 1: “Wrap” existing data structures
  – Step 2: Make BLAS-like kernel calls

```c
int* ptr = ..., *ind = ...; double* val = ...; /* Matrix, in CSR format */
double* x = ..., *y = ...; /* Let x and y be two dense vectors */
/* Step 1: Create OSKI wrappers around this data */
oski_matrix_t A_tunable = oski_CreateMatCSR(ptr, ind, val, num_rows,
                                             num_cols, SHARE_INPUTMAT, ...);
oski_vecview_t x_view = oski_CreateVecView(x, num_cols, UNIT_STRIDE);
oski_vecview_t y_view = oski_CreateVecView(y, num_rows, UNIT_STRIDE);

/* Compute y = \beta \cdot y + \alpha \cdot A \cdot x, 500 times */
for( i = 0; i < 500; i++ )
    my_matmult( ptr, ind, val, \alpha, x, \beta, y );
```
How to Call OSKI: Basic Usage

- May gradually migrate existing apps
  - Step 1: “Wrap” existing data structures
  - Step 2: Make BLAS-like kernel calls

```c
int* ptr = ..., *ind = ...; double* val = ...; /* Matrix, in CSR format */
double* x = ..., *y = ...; /* Let x and y be two dense vectors */
/* Step 1: Create OSKI wrappers around this data */
oski_matrix_t A_tunable = oski_CreateMatCSR(ptr, ind, val, num_rows,
                                         num_cols, SHARE_INPUTMAT, ...);
oski_vecview_t x_view = oski_CreateVecView(x, num_cols, UNIT_STRIDE);
oski_vecview_t y_view = oski_CreateVecView(y, num_rows, UNIT_STRIDE);

/* Compute y = β·y + α·A·x, 500 times */
for( i = 0; i < 500; i++ )
    oski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view); /* Step 2 */
```
How to Call OSKI: Tune with Explicit Hints

- User calls “tune” routine
  - May provide explicit tuning hints (OPTIONAL)

```c
oski_matrix_t A_tunable = oski_CreateMatCSR( ... );
  /* ... */

/* Tell OSKI we will call SpMV 500 times (workload hint) */
oski_SetHintMatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view, 500);
/* Tell OSKI we think the matrix has 8x8 blocks (structural hint) */
oski_SetHint(A_tunable, HINT_SINGLE_BLOCKSIZE, 8, 8);

oski_TuneMat(A_tunable); /* Ask OSKI to tune */

for( i = 0; i < 500; i++ )
  oski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);
```
How the User Calls OSKI: Implicit Tuning

• Ask library to infer workload
  – Library profiles all kernel calls
  – May periodically re-tune

```c
oski_matrix_t A_tunable = oski_CreateMatCSR( ... );
  /* ... */

for( i = 0; i < 500; i++ ) {
  oski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);
  oski_TuneMat(A_tunable); /* Ask OSKI to tune */
}
```
Multicore SMPs Used for Tuning SpMV

**Intel Xeon E5345 (Clovertown)**
- 4MB L2 cache
- 4MB L2 cache
- FSB 10.66 GB/s
- MCH (4x64b controllers) 21.33 GB/s
- 8 x 667MHz FB-DIMMs

**AMD Opteron 2356 (Barcelona)**
- 512K L2 cache
- 512K L2 cache
- 512K L2 cache
- HyperTransport
- 2x64b controllers
- 4GB/s
- 667MHz DDR2 DIMMs

**Sun T2+ T5140 (Victoria Falls)**
- 4MB Shared L2 (18 way)
- 4 Coherence Hubs
- 2x128b controllers
- 667MHz FB-DIMMs

**IBM QS20 Cell Blade**
- VMT PPE
- SPE
- 512K L2
- XDR memory controllers
- 512MB XDR DRAM
- 25.6 GB/s
## Multicore SMPs Used for Tuning SpMV

<table>
<thead>
<tr>
<th>System</th>
<th>Intel Xeon E5345 (Clovertown)</th>
<th>AMD Opteron 2356 (Barcelona)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache based</td>
<td>• Cache based</td>
<td>• Cache based</td>
</tr>
<tr>
<td>8 Threads</td>
<td>• 8 Threads</td>
<td>• 8 Threads</td>
</tr>
<tr>
<td>75 GFlops</td>
<td>• 75 GFlops</td>
<td>• 74 GFlops</td>
</tr>
<tr>
<td>21/10 GB/s R/W BW</td>
<td>• 21/10 GB/s R/W BW</td>
<td>• 21 GB/s R/W BW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>Sun T2+ T5140 (Victoria Falls)</th>
<th>IBM QS20 Cell Blade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache based</td>
<td>• Cache based</td>
<td>• Local-Store based</td>
</tr>
<tr>
<td>128 Threads (CMT)</td>
<td>• 128 Threads (CMT)</td>
<td>• 16 Threads</td>
</tr>
<tr>
<td>NUMA</td>
<td>• NUMA</td>
<td>• NUMA</td>
</tr>
<tr>
<td>19 GFlops</td>
<td>• 19 GFlops</td>
<td>• 29 Gflops (SPEs only)</td>
</tr>
<tr>
<td>42/21 GB/s R/W BW</td>
<td>• 42/21 GB/s R/W BW</td>
<td>• 51 GB/s R/W BW</td>
</tr>
</tbody>
</table>
Set of 14 test matrices

• All bigger than the caches of our SMPs

2K x 2K Dense matrix stored in sparse format

Well Structured (sorted by nonzeros/row)

Poorly Structured hodgepodge

Extreme Aspect Ratio (linear programming)

LP
SpMV Performance: Naive parallelization

- Out-of-the-box SpMV performance on a suite of 14 matrices
- Scalability isn’t great:
  Compare to # threads
  8  8
  128  16
NUMA-aware allocation is essential on NUMA SMPs.
Explicit software prefetching can boost bandwidth and change cache replacement policies.

used **exhaustive** search
SpMV Performance: “Matrix Compression”

- Compression includes
  - register blocking
  - other formats
  - smaller indices
- Use **heuristic** rather than search
SpMV Performance: cache and TLB blocking

Xeon E5345 (Cloverton)

Opteron 2356 (Barcelona)

UltraSparc T2+ T5140 (Victoria Falls)

QS20 Cell Blade (PPEs)

- +Cache/LS/TLB Blocking
- +Matrix Compression
- +SW Prefetching
- +NUMA/Affinity
- Naïve Pthreads
- Naïve
SpMV Performance: Architecture specific optimizations

- Cache/LS/TLB Blocking
- Register Block
- Prefetch
- NUMA
- Parallel
- Naïve

### Xeon E5345 (Clovertown)

- GFLOP/s

### Opteron 2356 (Barcelona)

- GFLOP/s

### UltraSparc T2+ T5140 (Victoria Falls)

- GFLOP/s

### QS20 Cell Blade (SPEs)

- GFLOP/s

Legend:
- Orange: Cache/LS/TLB Blocking
- Yellow: Matrix Compression
- Green: SW Prefetching
- Light Blue: NUMA/Affinity
- Purple: Naïve Pthreads
- Blue: Naïve
SpMV Performance: max speedup

- Fully auto-tuned SpMV performance across the suite of matrices
- Included SPE/local store optimized version
- Why do some optimizations work better on some architectures?

**Xeon E5345 (Clovertown)**

2.7x

**Opteron 2356 (Barcelona)**

4.0x

**UltraSparc T2+ T5140 (Victoria Falls)**

2.9x

**QS20 Cell Blade (SPEs)**

35x
Avoiding Communication in Sparse Linear Algebra

• k-steps of typical iterative solver for $Ax=b$ or $Ax=\lambda x$
  – Does $k$ SpMV with starting vector (eg with $b$, if solving $Ax=b$)
  – Finds “best” solution among all linear combinations of these $k+1$ vectors
  – Many such “Krylov Subspace Methods”
    • Conjugate Gradients, GMRES, Lanczos, Arnoldi, ...

• Goal: minimize communication in Krylov Subspace Methods
  – Assume matrix “well-partitioned,” with modest surface-to-volume ratio
  – Parallel implementation
    • Conventional: $O(k \log p)$ messages, because $k$ calls to SpMV
    • New: $O(\log p)$ messages - optimal
  – Serial implementation
    • Conventional: $O(k)$ moves of data from slow to fast memory
    • New: $O(1)$ moves of data – optimal

• Lots of speed up possible (modeled and measured)
  – Price: some redundant computation
Locally Dependent Entries for 
\([x, Ax]\), A tridiagonal, 2 processors

Can be computed without communication
Locally Dependent Entries for $[x, Ax, A^2x]$, $A$ tridiagonal, 2 processors

Can be computed without communication
Locally Dependent Entries for \([x, Ax, ..., A^3x]\), A tridiagonal, 2 processors

Can be computed without communication
Locally Dependent Entries for
\([x, Ax, \ldots, A^4x]\), A tridiagonal, 2 processors

Can be computed without communication
Locally Dependent Entries for
\([x, Ax, \ldots, A^8x], A\) tridiagonal, 2 processors

Can be computed without communication
k=8 fold reuse of A
Remotely Dependent Entries for 
\([x,Ax,\ldots,A^8x]\), A tridiagonal, 2 processors

One message to get data needed to compute remotely dependent entries, not \(k=8\)

Minimizes number of messages = latency cost

Price: redundant work \(\propto \) “surface/volume ratio”
Remotely Dependent Entries for $[x, Ax, A^2x, A^3x]$, irregular, multiple processors
Sequential $[x, Ax, ..., A^4x]$, with memory hierarchy

*One* read of matrix from slow memory, *not* $k=4$

Minimizes words moved = bandwidth cost

No redundant work
Performance results on 8-Core Clovertown
Minimizing Communication of GMRES

Classical GMRES for \( Ax=b \)

for \( i=1 \) to \( k \)

\[
\begin{align*}
  w &= A * v(i-1) \\
  \text{MGS}(w, v(0),...,v(i-1)) \\
  &\quad \text{... Modified Gram-Schmidt} \\
  &\quad \text{... to make } w \text{ orthogonal} \\
  \text{update } v(i), H \\
  &\quad \text{... } H = \text{matrix of coeffs} \\
  &\quad \text{... from MGS} \\
\end{align*}
\]

endfor

solve LSQ problem with \( H \) for \( x \)

Communication cost = \( k \) copies of \( A \), vectors from slow to fast memory

Communication-Avoiding GMRES, ver. 1

\[
\begin{align*}
  W &= [ v, Av, A^2v, ... , A^k v ] \\
  [Q,R] &= \text{TSQR}(W) \\
  &\quad \text{... “Tall Skinny QR”} \\
  &\quad \text{... new optimal QR discussed before} \\
  \text{Build } H \text{ from } R \\
  \text{solve LSQ problem with } H \text{ for } x \\
\end{align*}
\]

Communication cost = \( O(1) \) copy of \( A \), vectors from slow to fast memory

Let's confirm that we still get the right answer …
Matrix diag-cond-1.000000e-11: rel. 2-nrm resid.

- Right answer (converges)
- Oops, doesn't converge
Minimizing Communication of GMRES
(and getting the right answer)

Communication-Avoiding GMRES, ver. 2

\[ W = [ v, p_1(A)v, p_2(A)v, \ldots, p_k(A)v ] \]

... where \( p_i(A)v \) is a degree-\( i \) polynomial in \( A \) multiplied by \( v \)
... polynomials chosen to keep vectors independent

\[ [Q,R] = \text{TSQR}(W) \]

... “Tall Skinny QR”
... new optimal QR discussed before

Build \( H \) from \( R \)
... slightly different \( R \) from before

solve LSQ problem with \( H \) for \( x \)

Communication cost still optimal:

\( O(1) \) copy of \( A \), vectors from slow to fast memory
Right answer (converges)

Oops, doesn’t converge

Converges again!

Right answer (converges)
Speed ups on 8-core Clovertown
CA-GMRES = Communication-Avoiding GMRES

Runtime per kernel, relative to CA-GMRES(k,t), for all test matrices, using 8 threads and restart length 60

Paper by Mohiyuddin, Hoemmen, D. to appear in Supercomputing09
Sparse Conclusions

- Fast code must minimize communication
  - Especially for sparse matrix computations because communication dominates

- Generating fast code for a single SpMV
  - Design space of possible algorithms must be searched at run-time, when sparse matrix available
  - Design space should be searched automatically

- Biggest speedups from minimizing communication in an entire sparse solver
  - Many more opportunities to minimize communication in multiple SpMVs than in one
  - Requires transforming entire algorithm
  - Lots of open problems (stay tuned for M. Hoemmen’s PhD thesis...)

- For more information, see bebop.cs.berkeley.edu
Organizing Linear Algebra Motifs - in books and on-line

- www.netlib.org/lapack
- www.netlib.org/scalapack
- gams.nist.gov
- www.netlib.org/templates
- www.cs.utk.edu/~dongarra/etemplates

8/21/2009  James Demmel