FastTrack:

Efficient and Precise Dynamic
Race Detection

(+ identifying destructive races)

Cormac Flanagan
UC Santa Cruz

Stephen Freund
Williams College

Multithreading and Multicore

00000

Intel Processor Clock Speed (MHz)

vt | 10

R SR

Chip Multiprocessor (CMP)

* Multithreaded programming is notoriously difficult,
in part due to schedule-dependent behavior

* race conditions, deadlocks, atomicity violations, ...
o difficult to detect, reproduce, or eliminate

Race Conditions

 Two threads access a shared variable without
synchronization, and at least one thread does a write

* Very common

Therac-25

Dynamic Race Detection

—
A

Precision

—
A

Happens
Before

Lamport 78]

7

-~

o

« Compute partial order of operations
* Ensure conflicting access are not concurrent
 Sound & Complete

N\

\

Eraser
[SBN+ 97]

Cost

Dynamic Race Detection

—
A

Precision

—
A

Happens

Before
[Lamport 78]

4 N\
» Track locks held on all accesses to var.
- empty lock set implies possible race

« Unsound & Incomplete

W /

Eraser
[SBN+ 97]

Cost

Dynamic Race Detection

Happens

Before
[Lamport 78]

Vector Clocks [M 88]
Goldilocks [EQT 07]
DJIT+ [ISZ 99,PS 03]

TRaDe [¢B 01]

Precision

Barriers [PS 03]
Initialization [vPG 01]

&_
Eraser

[SBN+ 97]

Cost

Dynamic Race Detection

Precision

Happens

Before
[Lamport 78]

Vector Clocks [M 88]

RaceTrack [YRC 05]
MultiRace [PS 03]
Hybrid Race Detector [OC 03]

Initialization

&_
Eraser

[SBN+ 97]

Cost

O

Dynamic Race Detection

Precision

RACe—1<

Hybrid

Barrier:
Initialization

_/
Eraser

[SBN+ 97]

ector Clocks [M 88]
EQT 07]
RS 03]

Happens

Before
[Lamport 78]

/

* Design Criteria:
- sound

- efficient

(find at least 1st race on each var)
- complete (no false alarms)

 Insight: Accesses to a var are
almost always totally ordered

~

\ in the Happens-Before relaﬂoy

Cost

Happens-Before

* Event Ordering:
- program order
- synchronization order

* Types of Races:
- Write-Write
- Write-Read
= (write before read)

- Read-Write
* (read before write)

Thread A Thread B

acq (m)

x =0
rel (m)
o

Ve,

VC,

Write-Write Check: W,CVC, ?

3

0

4

1

? Yes

Read-Write Check: R,CVC,?

0

1

4

1

? Yes

O(n) time

VCA VCB Lm Wx Rx
| l I | | | | |
4 (1
x =0 Write-Read Check: W, ,EVC, ?
e 418 51112 No
rel (m)
ST O(n) time
"}
> | 1 4|8 4 4lo| o]l
X =
51 4|8 4 408| |0]1

Write-Write and Write-Read Races

Thread A Thread B Thread C Thread D

No Races Yet: Writes Totally Ordered!

Thread A Thread B Thread C Thread D

No Races Yet: Writes Totally Ordered!

Thread A Thread B Thread C Thread D

@ @ ? _
L

é

/Il

X =
; :
0 ' 0
read x > O(1)
O O

Ve,

Last Write
VC, L, W, "Epoch"

2| 8 121 I@B/

Write-Write Check: W,EVC, ?
@B |=X|4]|1]|?2 VYes

(1 ¢ 1?)

O(1) time

Ve, VC,
4 |1 2|8
'x=0
4 |1 2 | 8
rel (m)
511 \2 8
|acam |
511 4 | 8 .
"x=1
511 4 | 8

3@A

4@A

4@A

4@A

3@B

v_C, VC, L., W,
4|1 S 1 |
x = 0 | Write-Read Check: W, E VC, ?
o s@B | <[5]1]? No
rel (m)
SN @ <12) 01) time
h |acq (m) ;
> | 1 438 411 A@A
511 1|8 (a1 3@B

Read-Write Races -- Ordered Reads

Thread A Thread B Thread C Thread D

Most common case: thread-local, lock-protected, ...

Read-Write Races -- Unordered Reads

Thread A Thread B Thread C

VC,

read x:

T@A

T@A

T@A

T@A 8

)

O(1)
O(n)

O(n)

Read-Write Check: R, ,CVC,?

8

1

8

0

? No

Thread A

Thread B

Thread C

Thread D

@

O
Q@
:
.
O

> O(n)

Thread A Thread B Thread C Thread D

? ’ ? ?

O
Q@
:
.
O

Thread A Thread B Thread C Thread D

0 0 > .

r

Q-0 -0 - - -O - - D=~ -Q——O--

Thread A Thread B

° ;

?

Tread X Iread X

Forget VC for R,
and switch back
to "last read epoch"

é .é
. .

Thread C Thread D

@ ?
: :
: :
L
X =2 Q
. P
P

RoadRunner Architecture

S

tandard JVM

/

.

Instrumented

Event Stream

=/ Back-End A

i

Bytecode
| Cyrecode

]

{ RoadRunner J

Instrumenter

jAr

A: acqg(m)
A: read(x)
B: write(y)
A: rel (m)

Checker

jig

7 N\ AN

ﬂ:

L

e |

Java
Bytecode

1)

Error: race on x...

Validation

* Six race condition checkers
- all use RoadRunner
- share common components (eg, VectorClock)
- profiled and optimized

* Further optimization opportunities

- unsound extensions, dynamic escape analysis,
static analysis, implement inside JVM,
hardware support, ...

e 15 Benchmarks
- 2b0 KLOC

- locks, wait/notify, fork/join, barriers, ...

22 false positives
War'nings 3 false negatives

30
27

25 -

20 -

15

10

W

0 B \ \ \

Eraser MultiRace GoldiLocks Basic VC DIIT+ FastTrack
[SBN+ 97] [PS 03] [EQT 07] [M 88] [PS 03]

Slowdown (x Base Time)

50 89.8

45

40

3> 31.6

30

2> 21.7

20 o

15 o

o
()}

10

Empty Eraser MultiRace Goldilocks Basic VC DIIT+ FastTrack

O(n) Vector Clock Operations

1.0E+11

M Basic VC
C DIIT+

M FastTrack

1.0E+10
1.0E+9
1.0E+8

1.0E+5 -
1.0E+4
1.0E+3
1.0E+2
1.0E+1

1.0E+0 -

O(n) Vector Clock Operations

1.0E+11
1.0E+10
1.0E+9

1.0E+8
1.0E+7
1.0E+6
1.0E+5
1.0E+4
1.0E+3
1.0E+2
1.0E+1
1.0E+0 -

96.4% of all ops are
Reads/Writes

R/W ops requiring

O(n) time:
Basic VC 100%
DIIT+ 26.0%
FastTrack <0.1%

M Basic VC
DIIT+
M FastTrack

Memory Usage
* FastTrack allocated ~200x fewer VCs

Memory
Checker Overhead
Basic VC,
DJIT+ 7.9x
FastTrack 2.8x

(Note: VCs for dead objects can be garbage collected)

* Improvements
- accordion clocks [CB 01]
- analysis granularity [PS 03, YRC 05] (see paper)

Eclipse 3.4 |
QSCale Cllpse
- > 6,000 classes

- 24 threads
- custom sync. idioms

Europa
0205-0009

* Precision (tested 5 common tasks)
- Eraser: ~1000 warnings
- FastTrack: ~30 warnings

* Performance on compute-bound tasks
- > 2x speed of other precise checkers
- same as Eraser

Beyond Detecting Race Conditions

e FastTrack finds real race conditions
- races correlated with defects
- cause unintuitive behavior on relaxed memory

* Which race conditions are real bugs?
- that cause erroneous behaviors (crashes, etc)
- and are not "benign race conditions”

class Point {
double x, y;
static Point p;

Point() { x = 1.0; y = 1.0; }

static Point get() {
Point t = p;
if (t !'= null) return t;
synchronized (Point.class) {
if (p==null) p = new Point();
return p;
}
}

static double slope() {
return get().x / get().y;

}

public static void main(String[] args) {
fork { System.out.println(slope()); }
fork { System.out.println(slope()); }
}
}

Thread O

p = null
px = 0
py = 0
fork 1,2

Thread 1

read p // non-null
read px // ?

Thread 2

read p // null
acquire

read p // null
p = new Point
px =1

py =1
release

read px // get
read py // get

Thread O Thread 1 Thread 2

pY =
fork 1,2

read p // null
acquire
read p // null

n = new Point

release
read px // get
read py // get

Thread O Thread 1 Thread 2

fork 1,2

read p // null
acquire
read p // null

release
read px // get 1
read py // get 1

* Race: can return either write (mm non-determinism)
* Typical JVM: mostly sequentially consistent
e Adversarial memory

- use heuristics to return older stale values

Adversarial Memory

* Record history of all writes (plus VCs) to racy variables
* At read

- determine all visible writes legal under TMM

- heuristically pick one likely to crash target program
 Six heuristics:

- Sequentially consistent: return last write

- Oldest: return "most stale” value

- Oldest-but-different: never return same val twice

= if (p I= null) p.draw()
- Random, Random-but-different

Experimental Results

Erroneous Behavior Observation Rate (%)

JUMBLE configurations
. No Sequentiall Oldest but Random but | Destructive
Program Field Jumble (efgnsistenty Oldest Different S Different Race?
Figure 1 X 0 0 0 0 28 57 Yes
Figure 2 P 0 0 0 0 0 0 No
p-X 0 0 60 52 32 30 Yes
P.¥ 0 0 48 53 27 30 Yes
hedc Task.thread 0 0 0 96 24 43 Yes
MetaSearchResult.results 0 0 100 100 100 100 Yes
MetaSearchResult.completed 0 0 33 36 25 26 Yes
MetaSearchResult.request 0 0 0 0 0 0 No
Task.valid 0 0 0 0 0 0 No
jbb Company.elapsed-time 0 0 100 0 15 5 Yes
Company .mode 0 0 100 100 95 98 Yes
montecarlo | Universal.UNIVERSAL.DEBUG 0 0 0 0 0 0 No
mtrt RayTracer.threadCount 0 0 0 0 0 0 No
raytracer JGFRayTracerBench.checksumi 0 0 100 100 100 100 Yes
tsp TspSolver.MinTourLen 0 0 100 100 100 100 QoS
sor array index [0] and [1] 0 0 100 100 100 100 Yes
lufact array index [0] and [1] 0 0 100 100 100 100 Yes
moldyn array index [0] and [1] 0 0 100 100 100 100 Yes

