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Multithreading and Multicore
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* Multithreaded programming is notoriously difficult,
in part due to schedule-dependent behavior

* race conditions, deadlocks, atomicity violations, ...
o difficult to detect, reproduce, or eliminate




Race Conditions

 Two threads access a shared variable without
synchronization, and at least one thread does a write

* Very common
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« Compute partial order of operations
* Ensure conflicting access are not concurrent
 Sound & Complete

N\

\

Eraser
[SBN+ 97]

Cost




Dynamic Race Detection

—
A

Precision

—
A

Happens

Before
[Lamport 78]

4 N\
» Track locks held on all accesses to var.
- empty lock set implies possible race

« Unsound & Incomplete

W /

Eraser
[SBN+ 97]

Cost



Dynamic Race Detection

Happens

Before
[Lamport 78]

Vector Clocks [M 88]
Goldilocks [EQT 07]
DJIT+ [ISZ 99,PS 03]

TRaDe [¢B 01]

Precision

Barriers [PS 03]
Initialization [vPG 01]

&_
Eraser

[SBN+ 97]

Cost



Dynamic Race Detection

Precision

Happens

Before
[Lamport 78]

Vector Clocks [M 88]

RaceTrack [YRC 05]
MultiRace [PS 03]
Hybrid Race Detector [OC 03]

Initialization

&_
Eraser

[SBN+ 97]

Cost



O

Dynamic Race Detection

Precision

RACe—1<

Hybrid

Barrier:
Initialization

\_/
Eraser

[SBN+ 97]

ector Clocks [M 88]
EQT 07]
RS 03]

Happens

Before
[Lamport 78]

/

* Design Criteria:
- sound

- efficient

(find at least 1st race on each var)
- complete (no false alarms)

 Insight: Accesses to a var are
almost always totally ordered

~

\ in the Happens-Before relaﬂoy

Cost



Happens-Before

* Event Ordering:
- program order
- synchronization order

* Types of Races:
- Write-Write
- Write-Read
= (write before read)

- Read-Write
* (read before write)
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Write-Write and Write-Read Races

Thread A Thread B Thread C Thread D




No Races Yet: Writes Totally Ordered!

Thread A Thread B Thread C Thread D




No Races Yet: Writes Totally Ordered!
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Read-Write Races -- Ordered Reads

Thread A Thread B Thread C Thread D

Most common case: thread-local, lock-protected, ...



Read-Write Races -- Unordered Reads

Thread A Thread B Thread C
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RoadRunner Architecture
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Validation

* Six race condition checkers
- all use RoadRunner
- share common components (eg, VectorClock)
- profiled and optimized

* Further optimization opportunities

- unsound extensions, dynamic escape analysis,
static analysis, implement inside JVM,
hardware support, ...

e 15 Benchmarks
- 2b0 KLOC

- locks, wait/notify, fork/join, barriers, ...



22 false positives
War'nings 3 false negatives
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Slowdown (x Base Time)
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O(n) Vector Clock Operations
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O(n) Vector Clock Operations
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96.4% of all ops are
Reads/Writes

R/W ops requiring

O(n) time:
Basic VC 100%
DIIT+ 26.0%
FastTrack <0.1%
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Memory Usage
* FastTrack allocated ~200x fewer VCs

Memory
Checker Overhead
Basic VC,
DJIT+ 7.9x
FastTrack 2.8x

(Note: VCs for dead objects can be garbage collected)

* Improvements
- accordion clocks [CB 01]
- analysis granularity [PS 03, YRC 05] (see paper)



Eclipse 3.4 |
QSCale Cllpse
- > 6,000 classes

- 24 threads
- custom sync. idioms

Europa
0205-0009

* Precision (tested 5 common tasks)
- Eraser: ~1000 warnings
- FastTrack: ~30 warnings

* Performance on compute-bound tasks
- > 2x speed of other precise checkers
- same as Eraser



Beyond Detecting Race Conditions

e FastTrack finds real race conditions
- races correlated with defects
- cause unintuitive behavior on relaxed memory

* Which race conditions are real bugs?
- that cause erroneous behaviors (crashes, etc)
- and are not "benign race conditions”



class Point {
double x, y;
static Point p;

Point() { x = 1.0; y = 1.0; }

static Point get() {
Point t = p;
if (t !'= null) return t;
synchronized (Point.class) {
if (p==null) p = new Point();
return p;
}
}

static double slope() {
return get().x / get().y;

}

public static void main(String[] args) {
fork { System.out.println( slope() ); }
fork { System.out.println( slope() ); }
}
}



Thread O

p = null
px = 0
py = 0
fork 1,2

Thread 1

read p // non-null
read px // ?

Thread 2

read p // null
acquire

read p // null
p = new Point
px =1

py =1
release

read px // get
read py // get



Thread O Thread 1 Thread 2

pY =
fork 1,2

read p // null
acquire
read p // null

n = new Point

release
read px // get
read py // get




Thread O Thread 1 Thread 2

fork 1,2

read p // null
acquire
read p // null

release
read px // get 1
read py // get 1

* Race: can return either write (mm non-determinism)
* Typical JVM: mostly sequentially consistent
e Adversarial memory

- use heuristics to return older stale values



Adversarial Memory

* Record history of all writes (plus VCs) to racy variables
* At read

- determine all visible writes legal under TMM

- heuristically pick one likely to crash target program
 Six heuristics:

- Sequentially consistent: return last write

- Oldest: return "most stale” value

- Oldest-but-different: never return same val twice

= if (p I= null) p.draw()
- Random, Random-but-different



Experimental Results

Erroneous Behavior Observation Rate (%)

JUMBLE configurations
. No Sequentiall Oldest but Random but | Destructive
Program Field Jumble (efgnsistenty Oldest Different S Different Race?
Figure 1 X 0 0 0 0 28 57 Yes
Figure 2 P 0 0 0 0 0 0 No
p-X 0 0 60 52 32 30 Yes
P.¥ 0 0 48 53 27 30 Yes
hedc Task.thread 0 0 0 96 24 43 Yes
MetaSearchResult.results 0 0 100 100 100 100 Yes
MetaSearchResult.completed 0 0 33 36 25 26 Yes
MetaSearchResult.request 0 0 0 0 0 0 No
Task.valid 0 0 0 0 0 0 No
jbb Company.elapsed-time 0 0 100 0 15 5 Yes
Company .mode 0 0 100 100 95 98 Yes
montecarlo | Universal.UNIVERSAL.DEBUG 0 0 0 0 0 0 No
mtrt RayTracer.threadCount 0 0 0 0 0 0 No
raytracer JGFRayTracerBench.checksumi 0 0 100 100 100 100 Yes
tsp TspSolver.MinTourLen 0 0 100 100 100 100 QoS
sor array index [0] and [1] 0 0 100 100 100 100 Yes
lufact array index [0] and [1] 0 0 100 100 100 100 Yes
moldyn array index [0] and [1] 0 0 100 100 100 100 Yes




