
Efficient, High-Quality Image Contour Detection

Bryan Catanzaro, Bor-Yiing Su, Narayanan Sundaram, Yunsup Lee, Mark Murphy, Kurt Keutzer
EECS Department, University of California at Berkeley

573 Soda Hall, Berkeley, CA 94720
{catanzar, subrian, narayans, yunsup, mjmurphy, keutzer}@cs.berkeley.edu

Abstract

Image contour detection is fundamental to many image
analysis applications, including image segmentation, object
recognition and classification. However, highly accurate
image contour detection algorithms are also very computa-
tionally intensive, which limits their applicability, even for
offline batch processing. In this work, we examine efficient
parallel algorithms for performing image contour detec-
tion, with particular attention paid to local image analysis
as well as the generalized eigensolver used in Normalized
Cuts. Combining these algorithms into a contour detector,
along with careful implementation on highly parallel, com-
modity processors from Nvidia, our contour detector pro-
vides uncompromised contour accuracy, with an F-metric
of 0.70 on the Berkeley Segmentation Dataset. Runtime is
reduced from 4 minutes to 1.8 seconds. The efficiency gains
we realize enable high-quality image contour detection on
much larger images than previously practical, and the al-
gorithms we propose are applicable to several image seg-
mentation approaches. Efficient, scalable, yet highly accu-
rate image contour detection will facilitate increased per-
formance in many computer vision applications.

1. Introduction
We present a set of parallelized image processing algo-

rithms useful for highly accurate image contour detection
and segmentation. Image contour detection is closely re-
lated to image segmentation, and is an active area of re-
search, with significant gains in accuracy in recent years.
The approach outlined in [11], called gPb, achieves the
highest published contour accuracy to date, but does so at
high computational cost. On small images of approximately
0.15 megapixels, gPb requires 4 minutes of computation
time on a high-end processor. Many applications, such as
object recognition and image retrieval, could make use of
such high quality contours for more accurate image analy-
sis, but are still using simpler, less accurate image segmen-
tation approaches due to their computational advantages.

At the same time, the computing industry is experiencing
a massive shift towards parallel computing, driven by the
capabilities and limitations of modern semiconductor man-
ufacturing [2]. The emergence of highly parallel processors
offers new possibilities to algorithms which can be paral-
lelized to exploit them. Conversely, new algorithms must
show parallel scalability in order to guarantee increased per-
formance in the future. In the past, if a particular algo-
rithm was too slow for wide application, there was reason
to hope that future processors would execute the same code
fast enough to make it practical. Unfortunately, those days
are now behind us, and new algorithms must now express
large amounts of parallelism, if they hope to run faster in
the future.

In this paper, we examine efficient parallel algorithms
for image contour detection, as well as scalable implemen-
tation on commodity, manycore parallel processors, such as
those from Nvidia. Our image contour detector, built from
these building blocks, demonstrates that high quality image
contour detection can be performed in a matter of seconds
rather than minutes, opening the door to new applications.
Additionally, we show that our algorithms and implemen-
tation scale with increasing numbers of processing cores,
pointing the way to continued performance improvements
on future processors.

2. The gPb Detector
As mentioned previously, the highest quality image con-

tour detector currently known, as measured by the Berkeley
Segmentation Dataset, is the gPb detector. The gPb detec-
tor consists of many modules, which can be grouped into
two main components: mPb, a detector based on local im-
age analysis at multiple scales, and sPb, a detector based
on the Normalized Cuts criterion. An overview of the gPb
detector is shown in figure 1.

The mPb detector is constructed from brightness, color
and texture cues at multiple scales. For each cue, the de-
tector from [13] is employed, which estimates the probabil-
ity of boundary PbC,σ(x, y, θ) for a given image channel,
scale, pixel, and orientation by measuring the difference in

1

Image

Convert

(CIELAB)

Textons:

K-means

Localcues
Combine

(mPb)

Intervening Contour

(W)

Generalized

Eigensolver

Combine

(sPb)

Combine, Thin,

Normalize

Contours

(gPb)

Figure 1. The gPb detector

image channel C between two halves of a disc of radius
σ centered at (x, y) and oriented at angle θ. The cues are
computed over four channels: the CIELAB 1976 L channel,
which measures brightness, and A, B channels, which mea-
sure color, as well as a texture channel derived from texton
labels [12]. The cues are also computed over three different
scales [σ

2 , σ, 2σ] and eight orientations, in the interval [0, π).
The mPb detector is then constructed as a linear combina-
tion of the local cues, where the weights αij are learned by
training on an image database:

mPb(x, y, θ) =
4∑

i=1

3∑

j=1

αijPbCi,σj (x, y, θ) (1)

The mPb detector is then reduced to a pixel affinity ma-
trix W, whose elements Wij estimate the similarity between
pixel i and pixel j by measuring the intervening contour [9]
between pixels i and j. Due to computational concerns,
Wij is not computed between all pixels i and j, but only
for some pixels which are near to each other. In this case,
we use Euclidean distance as the constraint, meaning that
we only compute Wij ∀i, j s.t. ||(xi, yi) − (xj , yj)|| ≤ r,
otherwise we set Wij = 0. In this case, we set r = 5.

This constraint, along with the symmetry of the interven-
ing contour computation, ensures that W is a symmetric,
sparse matrix (see figure 5), which guarantees that its eigen-
values are real, significantly influencing the algorithms used
to compute sPb. Once W has been constructed, sPb fol-
lows the Normalized Cuts approach [16], which approxi-
mates the NP-hard normalized cuts graph partitioning prob-
lem by solving a generalized eigensystem. To be more spe-
cific, we must solve the generalized eigenproblem:

(D −W)v = λDv, (2)

where D is a diagonal matrix constructed from W : Dii =∑
j Wij . Only the k+1 eigenvectors vj with smallest eigen-

values are useful in image segmentation and need to be ex-
tracted. In this case, we use k = 8. The smallest eigen-
value of this system is known to be 0, and its eigenvector

is not used in image segmentation, which is why we extract
k + 1 eigenvectors. After computing the eigenvectors, we
extract their contours using Gaussian directional derivatives
at multiple orientations θ, to create an oriented contour sig-
nal sPbvj (x, y, θ). We combine the oriented contour sig-
nals together based on their corresponding eigenvalues:

sPb(x, y, θ) =
k+1∑

j=2

1√
λj

sPbvj (x, y, θ) (3)

The final gPb detector is then constructed by linear com-
bination of the local cue information and the sPb cue:

gPb(x, y, θ) = γ·sPb(x, y, θ)+
4∑

i=1

3∑

j=1

βijPbCi,σj (x, y, θ)

(4)
where the weights γ and βij are also learned via training.
To derive the final gPb(x, y) signal, we maximize over θ,
threshold to remove pixels with very low probability of be-
ing a contour pixel, skeletonize, and then renormalize.

3. Algorithmic Exploration
3.1. Local cues

Computing the local cues for all channels, scales, and
orientations is computationally expensive. There are two
major steps: computing the local cues, and then smooth-
ing them to remove spurious edges. We found significant
efficiency gains in modifying the local cue computation to
utilize integral images, so we will detail how this was ac-
complished.

3.1.1 Explicit local cues

Given an input channel, orientation, and scale, the local cue
computation involves building two histograms per pixel,
which describe the input channel’s intensity in the opposite
halves of a circle centered at that pixel, with the orientation
describing the angle of the diameter of the half-discs, and
the scale determining the radius of the half-discs. The two
histograms are optionally blurred with a Gaussian, normal-
ized, and then compared using the χ2 distance metric:

χ2(x, y) =
1
2

∑

i

(xi − yi)2

xi + yi
(5)

If the two histograms are significantly different, there is
likely to be an edge at that pixel, orientation and scale.

When computing these histograms by explicitly sum-
ming over half-discs, computation can be saved by noticing
that the computation for each orientation overlapped sig-
nificantly with other orientations, so the histograms were
computed for wedges of the circle, and then assembled into

the various half-disc histograms necessary for each orien-
tation. However, this approach does not consider that the
circle overlapped with circles centered at neighboring pix-
els. Additionally, this approach recomputes the histograms
completely for each of the different scales, and the com-
putation necessary is a function of the scale radius itself,
meaning that larger scales incur significantly more com-
putational cost than smaller scales. Furthermore, parallel
implementations of this approach are complicated by the
data-dependent nature of constructing histograms, which
incurs higher synchronization costs than algorithms with
static data dependency patterns.

3.1.2 Integral Images

To alleviate these problems, we turned to the well-known
technique of integral images [10]. Integral images allow
us to perform sums over rectangles in O(1) time instead of
O(N) time, where N is the number of pixels in the rectan-
gle. To construct an integral image, one computes I from
an image F as

I(x, y) =
x∑

x′=1

y∑

y′=1

F (x′, y′) (6)

Computing the sum of a shape then involves summing
as many entries from the integral image as there are corners
in the shape. For example, a rectangle with extent ranging
from (x1, y1) to (x2, y2) is summed as follows:

x2∑

x=x1

y2∑

y=y1

F (x, y) = I(x1 − 1, y1 − 1)

−I(x1 − 1, y2)− I(x2, y1 − 1) + I(x2, y2)

(7)

We use integral images to compute histograms of the half-
discs discussed previously. To do so, we approximate each
half-disc as a rectangle of equal area. Although integral
images can be used efficiently for summing other shapes
than rectangles, we found that this approximation worked
well.

!

!

Figure 2. Approximating a half-disc with a rectangle

We then compute an integral image for each bin of the
histogram, similarly to [17]. Complicating the use of inte-
gral images in this context is the fact that integral images

can only compute sums of rectangles, whereas we need to
compute sums of rotated rectangles. Computing integral
images for rotated images has been tried previously, but was
restricted to special angles, such as [7].

Our approach to rotated integral images reduces rotation
artifacts and can handle arbitrary angles, based on the use
of Bresenham lines [5]. The problem associated with com-
puting integral images on rotated images is that standard
approaches to rotating an image interpolate between pix-
els. This is not meaningful for texton labels: since the la-
bels are arbitrary integers without a partial ordering, bin n
bears no relation to bin n + 1, and therefore bin n + 0.5
has no meaning. Nearest neighbor interpolation does not
require interpolating the pixel values, but under rotation it
omits some pixels, while counting others multiple times, in-
troducing artifacts. To overcome this, we rotate the image
using Bresenham lines. This method ensures a one-to-one
correspondence between pixels in the original image and
pixels in the rotated image, at the expense of introducing
some blank pixels. The effect can be seen in Figure 3. Bre-
senham rotation does introduce some discretization of the
rotation angle, but this discretization tends to zero as the
image size increases1.

The Bresenham rotation produces images that are larger
than the original image, but are bounded at (w +h)2 pixels,
which bound is encountered at θ = π

4 .

ww

h

h

w + h tan θ

h + w tan θ

Figure 3. Bresenham rotation: Rotated image with θ = 18◦ clock-
wise, showing “empty pixels” in the rotated image.

Although Bresenham rotation introduces some compu-
tational inefficiencies due to empty pixels, it is more accu-
rate than nearest neighbor interpolation, since pixels are not
missed or multiply counted during the image integration, as
occurs using nearest neighbor interpolation. Therefore, we
use it in our local cue detector.

Integral images for computing histograms over rectan-
gles remove some of the computational complexity of the
local cues extraction. The explicit method for image his-
togram creation has complexity O(Nr2st), where N is the

1More analysis found in supplementary material

number of pixels, r is the radius of the half-disc being ex-
tracted, s is the number of scales, and t is the number of
orientations. It should be noted that some detectors might
wish to scale r2 with N, making the complexity O(N2st).
Using integral images reduces the complexity of histogram
construction to O(Nst).

3.2. Eigensolver
The generalized eigenproblem needed for Normalized

Cuts is the most computationally intensive part of the gPb
algorithm. Therefore, an efficient eigensolver is necessary
for achieving high performance. We have found that a
Lanczos-based eigensolver using the Cullum-Willoughby
test without reorthogonalization provides the best perfor-
mance on the eigenproblems generated by Normalized Cuts
approaches. We also exploit the special structure and prop-
erties of the graph Laplacian matrices generated for the Nor-
malized Cuts algorithm in our eigensolver. Before explain-
ing our improvements, we present the basic algorithm used
for solving these eigenproblems.

3.2.1 Lanczos Algorithm

The generalized eigenproblem from Normalized Cuts can
be transformed into a standard eigenproblem [16]: Av̄ =
λv̄, with A = D− 1

2 (D −W)D− 1
2 .

The matrix A is Hermitian, positive semi-definite, and
its eigenvalues are well distributed. Additionally, we only
need a few of the eigenvectors, corresponding to the small-
est k + 1 eigenvalues. Considering all the issues above, the
Lanczos algorithm is a good fit for this problem [3], and is
summarized in Figure 4. The complete eigenproblem has
complexity O(n3) where n is the number of pixels in the
image, but the Lanczos algorithm is O(mn)+O(mM(n)),
where m is the maximum number of matrix vector products,
and M(n) is the complexity of each matrix vector product,
which is O(n) in our case. Empirically, m is O(n 1

2) or
better for normalized cuts problems [16], meaning that this
algorithm scales at approximately O(n 3

2) for our problems.
For a given symmetric matrix A, the Lanczos algorithm

proceeds by iteratively building up a basis V , which is used
to project the matrix A into a tridiagonal matrix T . The
eigenvalues of T are computationally much simpler to ex-
tract than those of A, and they converge to the eigenvalues
of A as the algorithm proceeds. The eigenvectors of A are
then constructed by projecting the eigenvectors of T against
the basis V . More specifically, vj denotes the Lanczos vec-
tor generated by each iteration, Vj is the orthogonal basis
formed by collecting all the Lanczos vectors v1, v2, . . . , vj

in column-wise order, and Tj is the symmetric j×j tridiag-
onal matrix with diagonal equal to α1, α2, . . . ,αj , and up-
per diagonal equal to β1, β2, . . . ,βj−1. S and Θ form the
eigendecomposition of matrix Tj . Θ contains the approxi-

Algorithm: Lanczos
Input: A (Symmetric Matrix)

v (Initial Vector)
Output: Θ (Ritz Values)

X (Ritz Vectors)
1 Start with r ← v ;
2 β0 ← ‖r‖2 ;
3 for j ← 1, 2, . . . , until convergence
4 vj ← r/βj−1 ;
5 r ← Avj ;
6 r ← r − vj−1βj−1 ;
7 αj ← v∗j r ;
8 r ← r − vjαj ;
9 Reorthogonalize if necessary ;
10 βj ← ‖r‖2 ;
11 Compute Ritz values Tj = SΘS ;
12 Test bounds for convergence ;
13 end for
14 Compute Ritz vectors X ← VjS ;

Figure 4. The Lanczos algorithm.

mation to the eigenvalues of A, while S in conjunction with
V approximates the eigenvectors of A: xj = Vjsj .

There are three computational bottlenecks of the Lanc-
zos algorithm: Matrix-vector multiplication, Reorthogonal-
ization, and the eigendecomposition of the tridiagonal ma-
trix Tj . We discuss reorthogonalization for Normalized
Cuts problems in section 3.2.2, and the matrix-vector multi-
plication problem in section 3.2.3. We solve the third bottle-
neck by diagonalizing Tj infrequently, since it is only nec-
essary to do so when checking for convergence, which does
not need to be done at every iteration.

3.2.2 Reorthogonalization and the Cullum-
Willoughby test

In perfect arithmetic, the basis Vj constructed by the Lanc-
zos algorithm is orthogonal. In practice, however, finite
floating-point precision destroys orthogonality in Vj as the
iterations proceed. Many Lanczos algorithms preserve or-
thogonality by selectively reorthogonalizing new Lanczos
vectors vj against the existing set of Lanczos vectors Vj−1.
However, this is very computationally intensive. An al-
ternative is to proceed without reorthogonalization, as pro-
posed by Cullum and Willoughby [6]. We have found that
this alternative offers significant advantages for Normalized
Cuts problems in image segmentation and image contour
detection.

When Vj is not orthogonal, spurious and duplicate Ritz
values will appear in Θ, which need to be identified and re-

moved. This can be done by constructing T̂ as the tridiago-
nal matrix constructed by deleting the first row and first col-
umn of Tj . The spurious eigenvalues of Tj can then be iden-
tified by investigating the eigenvalues of T̂ . An eigenvalue
is spurious if it exists in Tj only once and exists in T̂ as
well. For more details, see [6]. Because the lower eigenval-
ues of affinity matrices encountered from the Normalized
Cuts approach to image segmentation are well distributed,
we can adopt the Cullum-Willoughby test to screen out spu-
rious eigenvalues. This approach improved eigensolver per-
formance by a factor of 20× over full reorthogonalization,
and 5× over selective reorthogonalization, despite requiring
significantly more Lanczos iterations.

This approach to reorthogonalization can be generally
applied to all eigenvalue problems solved as part of the nor-
malized cuts method for image segmentation. In general,
the eigenvalues corresponding to the different cuts (segmen-
tations) are well spaced out at the low end of the eigenspec-
trum. For the normalized Laplacian matrices with dimen-
sion N , the eigen values lie between 0 and N (loose upper
bound) as tr[A] =

∑
i λi = N and λi ≥ 0. Since the num-

ber of eigenvalues is equal to the number of pixels in the im-
age, one might think that as the number of pixels increases,
the eigenvalues will be more tightly clustered, complicating
convergence analysis using the Cullum-Willoughby test.
However, we have observed that this clustering is not too se-
vere for the smallest eigenvalues of matrices derived from
natural images, which are the ones needed by normalized
cuts. As justification for this phenomenon, we observe that
very closely spaced eigenvalues at the smaller end of the
eigenspectrum would imply that several different segmenta-
tions with different numbers of segments are equally impor-
tant, which is unlikely in natural images where the segmen-
tation, for a small number of segments, is usually distinct
from other segmentations. In practice, we have observed
that this approach works very well for Normalized Cuts im-
age segmentation computations.

3.2.3 Sparse Matrix Vector Multiplication (SpMV)

The Lanczos algorithm requires repeatedly multiplying the
matrix by dense vectors; given a randomly initialized vec-
tor v0, this process generates the sequence of vectors A ·
v0, A2 · v0, As the matrix is very large (N ×N , where
N is the number of pixels in the image), and the multiplica-
tion occurs in each iteration of the Lanczos algorithm, this
operation accounts for approximately 2/3 of the runtime of
the serial eigensolver.

SpMV is a well-studied kernel in the domain of scien-
tific computing, due to its importance in a number of sparse
linear algebra algorithms. A naı̈vely written implementa-
tion runs far below the peak throughput of most processors.
The poor performance is typically due to low-efficiency of

memory access to the matrix as well as the source and des-
tination vectors.

Figure 5. Example W matrix

The performance of SpMV depends heavily on the struc-
ture of the matrix, as the arrangement of non-zeroes within
each row determine the pattern of memory accesses. The
matrices arising from Normalized Cuts are all multiply
banded matrices, since they are derived from a stencil pat-
tern where every pixel is related to a fixed set of neighboring
pixels. Figure 5 shows the regular, banded structure of these
matrices. It is important to note that the structure arises
from the pixel-pixel affinities encoded in the W matrix, but
the A matrix arising from the generalized eigenproblem re-
tains the same structure. Our implementation exploits this
structure in a way that will apply to any stencil matrix.

In a stencil matrix, we can statically determine the loca-
tions of non-zeroes. Thus, we need not explicitly store the
row and column indices, as is traditionally done for general
sparse matrices. This optimization alone nearly halves the
size of the matrix data structure, and doubles performance
on nearly any platform. We store the diagonals of the matrix
in consecutive arrays, enabling high-bandwidth unit-stride
accesses, and reduce the indexing overhead to a single in-
teger per row. Utilizing similar optimizations as described
in [4], our SpMV routine achieves 40 GFlops/s on matrices
derived from the intervening contour approach, with r = 5,
leading to 81 nonzero diagonals.

4. Implementation and Results

Our code was written in CUDA [15], and comprises
parallel k-means, convolution, and skeletonization rou-
tines in addition to the local cues and eigensolver rou-
tines. Space constraints prohibit us from detailing these
routines, but it is important to note that our routines
require CUDA architecture 1.1, with increased perfor-
mance on the k-means routines on processors support-
ing CUDA architecture 1.2. The code from our imple-
mentation is freely available at http://parlab.eecs.
berkeley.edu/research/damascene.

4.1. Accuracy
4.1.1 Berkeley Segmentation Dataset

Firstly, we need to show that our algorithms have not de-
graded the contour quality. We evaluate the quality of our
contour detector by the BSDS benchmark [14]. As shown
in Figure 6, we achieve the same F-metric (0.70) as the gPb
algorithm [11], and the quality of our P-R curve is also very
competitive to the curve generated by the gPb algorithm.
Figure 7 illustrates contours for several images generated
by our contour detector.

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

P
re

ci
si

o
n

Recall

This work (F=0.70)

gPb (F=0.70)

Figure 6. Precision Recall Curve for our Contour Detector

4.1.2 Larger Images

To investigate the accuracy of our contour detector on larger
images, we repeated this precision-recall test on 4 images .
To generate this data, we hand labeled 4 images multiple
times to create a human ground truth test for larger images
2. We used our existing contour detector, without retraining
or changing the scales, and found that the contour detector
worked on larger images as well, with an indicated F-metric
of 0.75. Obviously, our test set was very small, so we are not
claiming that this is the realistic F-metric on larger images,
rather we are simply showing that the detector provides rea-
sonable results on larger images.

4.2. Runtime
To compare runtimes, we use the published gPb code,

running on an Intel Core i7 920 (2.66 GHz) with 4 cores and
8 threads. The original gPb code is written mostly in C++,
coordinated by MATLAB scripts, as well as MATLAB’s
eigs eigensolver, which is based on ARPACK and is rea-
sonably optimized. We found MATLAB’s eigensolver per-
formed similarly to TRLan [18] on Normalized Cuts prob-
lems.

Although most of the computation in gPb was done
in C++, there was one routine which was implemented in

2Labeled images and results in supplementary material

Component gPb This work Speedup
(Core i7) (GTX 280)

Preprocess 0.090 0.001 90×
Textons 8.58 0.159 54×
Local Cues 53.18 0.569 93×
Smoothing 0.59 0.270 2.2×
Int. Contour 6.32 0.031 204×
Eigensolver 151.2 0.777 195×
Post Process 2.7 0.006 450×
Total 236.7 1.822 130×

Table 1. Runtimes in seconds (0.15 MP image)

MATLAB and performed unacceptably: the convolutions
required for local cue smoothing. In order to make our run-
time comparisons fair, we wrote our own parallel convolu-
tion routine, taking full advantage of SIMD & thread paral-
lelism on the Intel processor, and report the runtime using
our convolution routine instead of the one which accompa-
nies the gPb code.

To be conservative in our comparisons of our fully par-
allelized implementation with the serial gPb detector, we
also took advantage of thread-level parallelism in our Intel
convolution routine, and allowed MATLAB to parallelize
the eigensolver over our 8 threaded Core i7 processor. This
means that a completely serial version of gPb would be
somewhat slower than the version we compare against.

Comparisons between gPb and this work are found in
table 1.

4.3. Algorithmic Improvements
To isolate the algorithmic efficiency gains from the im-

plementation efficiency gains, we examine the performance
of the local cues extraction and the eigensolver.

Local Explicit Integral
cues Method Images

Runtime (s) 4.0 0.569

Table 3. Local Cues Runtimes on GTX 280

The explicit local cues method utilizes a parallelized ver-
sion of the same histogram building approach found in gPb:
it explicitly counts all pixels in each half-disc, for each ori-
entation and scale. As shown in table 3, the integral image
approach is about about 7× more efficient than the explicit
method.

Eigensolver
Reorthogonalization Full Selective None (C-W)
Runtime (s) 15.83 3.60 0.78

Table 4. Eigensolver Runtimes on GTX 280

Figure 7. Selected image contours

Processor Preprocess Textons Local Cues Smoothing Int. Contour Eigensolver Postprocess Total
8600M GT 0.010 10.337 7.761 2.983 0.300 7.505 0.041 28.962
9800 GX2 0.003 2.311 1.226 0.530 0.056 1.329 0.009 5.497
GTX 280 0.001 0.159 0.569 0.270 0.031 0.777 0.006 1.822

Tesla C1060 0.002 0.178 0.584 0.267 0.03 1.166 0.006 2.243

Table 2. GPU Scaling. Runtimes in seconds

Table 4 shows the effect of various reorthogonalization
strategies. Full reorthogonalization ensures that every new
Lanczos vector vj is orthogonal to all previous vectors. Se-
lective reorthogonalization monitors the loss of orthogonal-
ity in the basis and performs a full reorthogonalization only
when the loss of orthogonality is numerically significant to
within machine floating-point tolerance. The strategy we
use, as outlined earlier, is to forgo reorthogonalization, and
use the Cullum-Willoughby test to remove spurious eigen-
values due to loss of orthogonality. As shown in the table,
this approach provides a 20× gain in efficiency.

4.4. Scalability
We ran our detector on a variety of commodity, single-

socket graphics processors from Nvidia, with widely vary-
ing degrees of parallelism. These experiments were per-
formed to demonstrate that our approach scales to a wide
variety of processors. The exact specifications of the pro-
cessors we used can be found in Table 5.

Processor Cores Memory Clock Available
model (Multi Bandwidth Frequency Memory

processors) GB/s GHz MB
8600M GT 4 12.8 0.92 256
9800 GX2 16 64 1.51 512
GTX 280 30 141.7 1.30 1024
C1060 30 102 1.30 4096

Table 5. Processor Specifications

Figure 8 shows how the runtime of our detector scales
with increasingly parallel processors, with more details in
table 2. Each of the 4 processors we evaluated is repre-

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0! 8! 16! 24! 32!

Im
ag

es
 p

er
 s

ec
o
n
d
!

Number of Cores!

Parallel Scalability!

Figure 8. Performance scaling with parallelism (0.15 MP images)

sented on the plot of performance versus the number of
cores. We have two processors with the same number of
cores, but different amounts of memory bandwidth, which
explain the different results at 30 cores. Clearly, our work
efficiently capitalizes on parallel processors, which gives us
confidence that performance will continue to increase on
future generations of manycore processors.

Figure 9 demonstrates the runtime dependence on input
image size. These experiments were all run on the Tesla
C1060 processor, since we require its large memory capac-
ity to compute contours on the larger images. Runtime de-
pendence is mostly linear in the number of pixels over this
range of image sizes.

5. Conclusion
In this work, we have demonstrated how the careful

choice of parallel algorithms along with implementation on

0

5

10

15

20

0.E+00 5.E+05 1.E+06 2.E+06

T
im

e
(s

ec
o
n
d
s)

Pixels

Image Size Scalability

Figure 9. Runtime scaling with increased image size

manycore processors can enable high quality, highly effi-
cient image contour detection. We have detailed how one
can use integral images to improve efficiency by replacing
histogram construction with parallel prefix operations even
under arbitrary rotations. We have also shown how eigen-
problems encountered in Normalized Cuts approaches to
image segmentation can be efficiently solved by the Lanc-
zos algorithm with Cullum-Willoughby test.

Combining these contributions to create a contour de-
tector, we show that runtime can be reduced over 100×,
while still providing equivalent contour accuracy. We have
also shown how our routines allow us to find image con-
tours for larger images, and detailed how our detector scales
across processors with widely varying amounts of paral-
lelism. This makes us confident that future, even more par-
allel manycore processors will continue providing increased
performance on image contour detection.

Future work includes using the components we have de-
veloped in other computer vision problems. It is possible
that doing more image analysis with our optimized com-
ponents will allow for yet higher image contour detection
quality. Our contours could be integrated into a method
which produces image segments, such as [1], which can be
more natural in some applications, such as object recogni-
tion [8]. Other possibilities are also open, such as video seg-
mentation. We believe that the efficiency gains we realize
will allow for high quality image segmentation approaches
to be more widely utilized in many contexts.

6. Acknowledgements

Thanks to Michael Maire for suggesting we investi-
gate integral images, and Pablo Arbeláez for assisting us
with the gPb algorithm. Research supported by Microsoft
(Award #024263) and Intel (Award #024894) funding, and
by matching funding from U.C. Discovery (Award #DIG07-
10227).

References
[1] P. Arbeláez, M. Maire, and J. Malik. From contours to re-

gions: An empirical evaluation. In CVPR, 2009.
[2] K. Asanović, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hus-

bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,
S. W. Williams, and K. A. Yelick. The Landscape of Par-
allel Computing Research: A View from Berkeley. Techni-
cal Report UCB/EECS-2006-183, EECS Department, Uni-
versity of California, Berkeley, Dec 2006.

[3] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der
Vorst. Templates for the solution of Algebraic Eigenvalue
Problems: A Practical Guide. SIAM, 2000.

[4] N. Bell and M. Garland. Implementing sparse matrix-vector
multiplication on throughput oriented processors. In Super-
computing ’09, Nov. 2009.

[5] J. Bresenham. Algorithm for computer control of a digital
plotter. IBM Systems Journal, 4(1):25–30, 1965.

[6] J. K. Cullum and R. A. Willoughby. Lanczos Algorithms for
Large Symmetric Eigenvalue Computations. Vol. I: Theory.
SIAM, 2002.

[7] S. Du, N. Zheng, Q. You, Y. Wu, M. Yuan, and J. We. Ro-
tated haar-like features for face detection with in-plane rota-
tion. LNCS, 4270/2006:128–137, 2006.

[8] C. Gu, J. Lim, P. Arbeláez, and J. Malik. Recognition using
regions. In CVPR, 2009.

[9] T. Leung and J. Malik. Contour continuity in region based
image segmentation. In In Proc. ECCV, LNCS 1406, pages
544–559. Springer-Verlag, 1998.

[10] R. Lienhart and J. Maydt. An extended set of haar-like fea-
tures for rapid object detection. In Proc. IEEE Conf. on Im-
age Processing, pages 155–162, New York, USA, 2002.

[11] M. Maire, P. Arbeláez, C. Fowlkes, and J. Malik. Using
contours to detect and localize junctions in natural images.
CVPR, pages 1–8, June 2008.

[12] J. Malik, S. Belongie, J. Shi, and T. Leung. Textons, con-
tours and regions: Cue integration in image segmentation.
In ICCV ’99, page 918, Washington, DC, USA, 1999. IEEE
Computer Society.

[13] D. Martin, C. Fowlkes, and J. Malik. Learning to detect nat-
ural image boundaries using brightness and texture, 2002.

[14] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In ICCV 2001, volume 2, pages 416–423, July
2001.

[15] Nvidia. Nvidia CUDA, 2007. http://nvidia.com/
cuda.

[16] J. Shi and J. Malik. Normalized cuts and image segmen-
tation. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 22(8):888–905, Aug 2000.

[17] M. Villamizar, A. Sanfeliu, and J. Andrade-Cetto. Compu-
tation of rotation local invariant features using the integral
image for real time object detection. In Int’l. Conf. on Pat-
tern Recognition, 2006.

[18] K. Wu and H. Simon. Thick-restart lanczos method for large
symmetric eigenvalue problems. SIAM Journal on Matrix
Analysis and Applications, 22(2):602–616, 2001.

