
Performance Debugging:
 Methods and Tools

David Skinner
deskinner@lbl.gov

Performance Debugging: Methods and Tools

•  Principles
–  Topics in performance scalability
–  Examples of areas where tools can help

•  Practice
–  Where to find tools
–  Specifics to NERSC and Hopper

•  Scope & Audience
–  Budding simulation scientist app dev
–  Compiler/middleware dev, YMMV

 2

One Slide about NERSC

•  Serving all of
DOE Office of
Science
–  domain breadth
–  range of scales

•  Lots of users
–  ~4K active
–  ~500 logged in
–  ~300 projects

•  Science driven
–  sustained

performance

•  Architecture
aware
–  procurements

driven by workload
needs

Big Picture of
Performance and Scalability

4

What is performance?

no output

incorrect performance

July 2012

big fast computers

one misconfig

-$400M in 30min

App Performance: Dimensions

•  Code
•  Input deck
•  Computer
•  Concurrency
•  Workload
•  Person

6

•  To your goals
–  Time to solution, Tq+Twall …

–  Your research agenda
–  Efficient use of allocation

•  To the

–  application code
–  input deck
–  machine type/state

Performance is Relative

Suggestion:
Focus on specific use cases

as opposed to making
everything

perform well.
Bottlenecks can shift.

8

Formulate
Research
Problem

Coding

Debug Perf
Debug

jobs jobs
jobs jobs

Queue
Wait

Data?

UQ
VV

Understand
& Publish!

Performance, more than a single number

• Plan where to put effort

• Optimization in one area
can de-optimize another

• Timings come from
timers and also from your
calendar, time spent
coding

• Sometimes a slower
algorithm is simpler to
verify correctness

9

•  Serial
–  Leverage ILP on the processor
–  Feed the pipelines
–  Exploit data locality
–  Reuse data in cache

•  Parallel
–  Expose concurrency
–  Minimizing latency effects
–  Maximizing work vs. communication

Different Facets of Performance

Registers

Caches

Local Memory

Remote Memory

Disk / Filesystem

10

Performance is Hierarchical

instructions & operands

lines

pages

messages

blocks, files

…on to specifics about HPC tools

Mostly at NERSC but fairly general

11

Registers

Caches

Local Memory

Remote Memory

Disk / Filesystem

12

Tools are Hierarchical

PAPI

valgrind
Craypat

IPM
Tau

 SAR/LMT

PMPI

13

•  Sampling
–  Regularly interrupt the program and record
where it is
–  Build up a statistical profile

•  Tracing / Instrumenting
–  Insert hooks into program to record and time
events, document everything

•  Use Hardware Event Counters
–  Special registers count events on processor
–  E.g. floating point instructions
–  Many possible events
–  Only a few (~4 counters)

HPC Perf Tool Mechanisms

Typical Tool Use Requirements

•  (Sometimes) Modify your code with
macros, API calls, timers
•  Compile your code
•  Transform your binary for profiling/
tracing with a tool
•  Run the transformed binary

–  A data file is produced
•  Interpret the results with a tool

14

Performance Tools @ NERSC

•  Vendor Tools:
–  CrayPat

•  Community Tools :
–  TAU (U. Oregon via ACTS)
–  PAPI (Performance Application
Programming Interface)
–  gprof

•  IPM: Integrated Performance Monitoring

15

What HPC tools can tell us?

•  CPU and memory usage
–  FLOP rate
–  Memory high water mark

•  OpenMP
–  OMP overhead
–  OMP scalability (finding right # threads)

•  MPI
–  % wall time in communication
–  Detecting load imbalance
–  Analyzing message sizes

16

Tools can add overhead to code execution
•  What level can you tolerate?

Tools can add overhead to scientists
•  What level can you tolerate?

Scenarios:
•  Debugging a code that is “slow”
•  Detailed performance debugging
•  Performance monitoring in production

17

Using the right tool

Introduction to CrayPat

•  Suite of tools to provide a wide range of
performance-related information

•  Can be used for both sampling and tracing
user codes
–  with or without hardware or network performance

counters
–  Built on PAPI

•  Supports Fortran, C, C++, UPC, MPI, Coarray
Fortran, OpenMP, Pthreads, SHMEM

•  Man pages
–  intro_craypat(1), intro_app2(1), intro_papi(1)

18

Using CrayPat @ Hopper

1.  Access the tools
–  module load perftools!

2.  Build your application; keep .o files
–  make clean!
–  make!

3.  Instrument application
–  pat_build ... a.out!
–  Result is a new file, a.out+pat!

4.  Run instrumented application to get top time consuming
routines

–  aprun ... a.out+pat!
–  Result is a new file XXXXX.xf (or a directory containing .xf files)

5.  Run pat_report on that new file; view results
–  pat_report XXXXX.xf > my_profile!
–  vi my_profile!
–  Result is also a new file: XXXXX.ap2

19

Guidelines for Optimization

20

* Suggested by Cray

Derived metric Optimization needed when* PAT_RT_HWP
C

Computational intensity < 0.5 ops/ref 0, 1
L1 cache hit ratio < 90% 0, 1, 2
L1 cache utilization (misses) < 1 avg hit 0, 1, 2
L1+L2 cache hit ratio < 92% 2
L1+L2 cache utilization
(misses) < 1 avg hit 2

TLB utilization < 0.9 avg use 1
(FP Multiply / FP Ops) or
(FP Add / FP Ops) < 25% 5

Vectorization < 1.5 for dp; 3 for sp 12 (13, 14)

Perf Debug and Production Tools

•  Integrated Performance Monitoring
•  MPI profiling, hardware counter

metrics, POSIX IO profiling
•  IPM requires no code modification &

no instrumented binary
–  Only a “module load ipm” before running

your program on systems that support
dynamic libraries

–  Else link with the IPM library
•  IPM uses hooks already in the MPI

library to intercept your MPI calls and
wrap them with timers and counters

21

IPM: Let’s See

1) Do “module load ipm”, link with
$IPM, then run normally

2) Upon completion you get

Maybe that’s enough. If so you’re done.
Have a nice day !

##IPM2v0.xx##

command : ./fish -n 10000
start : Tue Feb 10 11:05:21 2012 host : nid06027
stop : Tue Feb 10 11:08:19 2012 wallclock : 177.71
mpi_tasks : 25 on 2 nodes %comm : 1.62
mem [GB] : 0.24 gflop/sec : 5.06
…

IPM : IPM_PROFILE=full

23

!
host : s05601/006035314C00_AIX mpi_tasks : 32 on 2 nodes!
start : 11/30/04/14:35:34 wallclock : 29.975184 sec!
stop : 11/30/04/14:36:00 %comm : 27.72!
gbytes : 6.65863e-01 total gflop/sec : 2.33478e+00 total!
[total] <avg> min max!
wallclock 953.272 29.7897 29.6092 29.9752!
user 837.25 26.1641 25.71 26.92!
system 60.6 1.89375 1.52 2.59!
mpi 264.267 8.25834 7.73025 8.70985!
%comm 27.7234 25.8873 29.3705!
gflop/sec 2.33478 0.0729619 0.072204 0.0745817!
gbytes 0.665863 0.0208082 0.0195503 0.0237541!
PM_FPU0_CMPL 2.28827e+10 7.15084e+08 7.07373e+08 7.30171e+08!
PM_FPU1_CMPL 1.70657e+10 5.33304e+08 5.28487e+08 5.42882e+08!
PM_FPU_FMA 3.00371e+10 9.3866e+08 9.27762e+08 9.62547e+08!
PM_INST_CMPL 2.78819e+11 8.71309e+09 8.20981e+09 9.21761e+09!
PM_LD_CMPL 1.25478e+11 3.92118e+09 3.74541e+09 4.11658e+09!
PM_ST_CMPL 7.45961e+10 2.33113e+09 2.21164e+09 2.46327e+09!
PM_TLB_MISS 2.45894e+08 7.68418e+06 6.98733e+06 2.05724e+07!
PM_CYC 3.0575e+11 9.55467e+09 9.36585e+09 9.62227e+09!
[time] [calls] <%mpi> <%wall>!
MPI_Send 188.386 639616 71.29 19.76!
MPI_Wait 69.5032 639616 26.30 7.29!
MPI_Irecv 6.34936 639616 2.40 0.67!
MPI_Barrier 0.0177442 32 0.01 0.00!
MPI_Reduce 0.00540609 32 0.00 0.00!
MPI_Comm_rank 0.00465156 32 0.00 0.00!
MPI_Comm_size 0.000145341 32 0.00 0.00!

Analyzing IPM Data

Communication time
per type of MPI call

CDF of time per MPI call over message
sizes

Pairwise com-
munication volume
(comm. topology)

Tracing: Hard but Thorough

Time "

M
P

I
R

an
k

"

Sync

Flops

Exchange

26

•  There is a tradeoff between vendor-
specific and vendor neutral tools

–  Each have their roles, vendor tools can
often dive deeper

•  Portable approaches allow apples-to-
apples comparisons

–  Events, counters, metrics may be
incomparable across vendors

•  You can find printf most places
–  Put a few timers in your code?

Advice: Develop (some) portable approaches to
app optimization

So you run your code with a perf tool
and get some numbers…what do

they mean?

27

Performance: Definitions

28

Be aware there are
multiple
definitions for these
terms

How do we measure performance?

Speed up = Ts/Tp(n)
Efficiency = Ts/(n*Tp(n))

n=cores, s=serial, p=parallel

Isoefficiency: contours of
constant efficiency amongst all
problem sizes and concurrencies

Parallel speedups for x#x, how much?
C

P
U

s (threads via O
penM

P
)

Systematic Perf Measurement

•  Scaling studies involve changing the
degree of parallelism. Will we be
changing the problem also?

•  Strong scaling : Fixed problem size
•  Weak scaling: Problem size grows with

additional resources

•  Optimization: Is the concurrency

chosing the problem size or vice versa?

Sharks and Fish: Cartoon

Data:
n_fish is global
my_fish is local
fishi = {x, y, …}

Dynamics:

MPI_Allgatherv(myfish_buf, len[rank], ..

 for (i = 0; i < my_fish; ++i) {
 for (j = 0; j < n_fish; ++j) { // i!=j
 ai += g * massj * (fishi – fishj) / rij
 }
}

Move fish
qHp
pHq

VKH
maF

V
ij ijr

∂−∂=

∂−∂=

+=

=

≈∑

/
/

1

&
&

See a glimpse here:
http://www.leinweb.com/snackbar/wator/

Running on a NERSC machine
•  100 fish can move 1000 steps in

1 task " 5.459s
32 tasks " 2.756s

•  1000 fish can move 1000 steps in
1 task " 511.14s
32 tasks " 20.815s

•  What’s the “best” way to run?
–  How many fish do we really have?
–  How large a computer do we have?
–  How much “computer time” i.e. allocation do we have?
–  How quickly, in real wall time, do we need the answer?

Sharks and Fish Results

x 24.6 speedup

x 1.98 speedup

Good 1st Step: Do runtimes make sense?

1 Task

32 Tasks

…

Running fish_sim for 100-1000 fish on 1-32 CPUs we see

Isoeffciencies

35

Too much communication

Scaling studies are
not always so simple

36

How many perf measurements?

With a particular goal in mind, we systematically
vary concurrency and/or problem size

37

Example:

How large a 3D (n^3)
FFT can I efficiently
run on 1024 cpus?

Looks good?

$
$

$

$
$

The scalability landscape

–  Algorithm
complexity or
switching

–  Communication
protocol
switching

–  Inter-job
contention

–  ~bugs in vendor
software

"
 W

hoa!

Why so bumpy?

39

Not always so tricky

Main loop in jacobi_omp.f90; ngrid=6144 and maxiter=20

Scaling Studies at Scale

Wallclock scaling

384

768

1536

3072

12288
24576 49152

256

512

2048

4096

1024

2048
4096

6144

1024

100

1,000

10,000

100 1000 10000 100000

Number of Cores

Time [sec]
Kraken
Carver
Ranger
Ideal Scaling

Time in OpenMP Parallel Regions

384

768

1536

3072

12288
24576 49152

256

512

2048

4096

1024

2048

4096

6144

1024

100

1,000

10,000

100 1000 10000 100000
Number of Cores

Time [sec]
Kraken
Carver
Ranger
Ideal Scaling

Time in MPI calls

384
768

1536

3072

12288
2457649152

256 512

2048
4096

1024

2048

4096

6144

1024

100

1,000

10,000

100 1000 10000 100000
Number of Cores

Time [sec]
Kraken

Carver

Ranger

Ideal Scaling

%  Gyrokinetic Toroidal Code
(fusion simulation)

–  OpenMP enabled 4/6 threads
–  Scaling up to 49152 cores
–  3 machines

Let’s look at scaling performance in more depth.
A key impediment is often load imbalance

41

Load Imbalance : Pitfall 101

MPI ranks sorted by total communication time

Communication Time: 64 tasks show 200s, 960 tasks show 230s

Load imbalance is pernicious

43

keep
checking

it

Load Balance : cartoon

Universal App Unbalanced:

Balanced:

Time saved by load balance

Load Balance: Summary

• Imbalance often a byproduct of
1) data decomposition or 2) multi-core concurrency quirks

• Must be addressed before further MPI tuning can happen
• For regular grids consider padding or contracting
• Good software exists for graph partitioning / remeshing

• Dynamical load balance may be required for adaptive codes

Other performance scenarios

Simple Stuff:
What’s wrong here?

This is
why we
need perf
tools that
are easy
to use

IPM
Profile

Not so simple: Comm. topology

MILC

PARATEC IMPACT-T CAM

MAESTRO GTC

48

Application Topology

Performance in Batch Queue Space

50

Consider your
schedule

•  Charge factor
•  regular vs. low

•  Scavenger
queues

•  Xfer queues
•  Downshift

concurrency

Consider the queue
constraints

•  Run limit
•  Queue limit
•  Wall limit

•  Soft (can you
checkpoint?)

51

A few notes on queue optimization

Jobs can submit other jobs

Marshalling your own workflow

•  Lots of choices in general
–  Hadoop, CondorG, MySGE

•  On hopper it’s easy

52

#PBS -l mppwidth=4096
aprun –n 512 ./cmd &
aprun –n 512 ./cmd &
…
aprun –n 512 ./cmd &

wait

#PBS -l mppwidth=4096
while(work_left) {
 if(nodes_avail) {
 aprun –n X next_job &
 }
wait
}

Contacts:
help@nersc.gov
deskinner@lbl.gov

 53

Thanks!

Formulate
Research
Problem

Coding

Debug Perf
Debug

jobs jobs
jobs jobs

Queue
Wait

Data?

UQ
VV

Understand
& Publish!

