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Performance Debugging: Methods and Tools 

•  Principles 
–  Topics in performance scalability 
–  Examples of areas where tools can help 

•  Practice 
–  Where to find tools  
–  Specifics to NERSC and Hopper 

•  Scope & Audience 
–  Budding simulation scientist app dev 
–  Compiler/middleware dev, YMMV 
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One Slide about NERSC 

•  Serving all of 
DOE Office of 
Science 
–  domain breadth 
–  range of scales 
   

•  Lots of users 
–  ~4K active 
–  ~500 logged in 
–  ~300 projects  

•  Science driven 
–  sustained 

performance  

•  Architecture 
aware 
–  procurements 

driven by workload 
needs 

  



Big Picture of  
Performance and Scalability 
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What is performance? 

no output 

incorrect performance 

July 2012  

big fast computers  
 

one misconfig 
 

-$400M in 30min 



App Performance: Dimensions 

•  Code 
•  Input deck 
•  Computer 
•  Concurrency 
•  Workload 
•  Person 
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•  To your goals 
–  Time to solution, Tq+Twall … 

–  Your research agenda 
–  Efficient use of allocation 

  
•  To the  

–  application code 
–  input deck 
–  machine type/state 

Performance is Relative 

Suggestion:  
Focus on specific use cases 

as opposed to making  
everything  

perform well.  
Bottlenecks can shift. 
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Formulate 
Research 
Problem  

Coding 

Debug Perf 
Debug 

jobs jobs 
jobs jobs  

Queue 
Wait 

Data? 

UQ 
VV 

Understand 
& Publish! 

Performance, more than a single number 

• Plan where to put effort 

• Optimization in one area 
can de-optimize another 

• Timings come from 
timers and also from your 
calendar, time spent 
coding 

• Sometimes a slower 
algorithm is simpler to 
verify correctness 
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•  Serial 
–  Leverage ILP on the processor 
–  Feed the pipelines 
–  Exploit data locality 
–  Reuse data in cache 

•  Parallel 
–  Expose concurrency  
–  Minimizing latency effects 
–  Maximizing work vs. communication 

Different Facets of Performance 



Registers 

Caches 

Local Memory 

Remote Memory 

Disk / Filesystem  
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Performance is Hierarchical 

instructions  & operands 

lines 

pages 

messages 

blocks, files 



…on to specifics about HPC tools 

Mostly at NERSC but fairly general 
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Registers 

Caches 

Local Memory 

Remote Memory 

Disk / Filesystem  
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Tools are Hierarchical 

PAPI 

valgrind 
Craypat 

IPM 
Tau 

       SAR/LMT 

PMPI 
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•  Sampling 
–  Regularly interrupt the program and record 
where it is 
–  Build up a statistical profile 

•  Tracing / Instrumenting 
–  Insert hooks into program to record and time 
events, document everything  

•  Use Hardware Event Counters 
–  Special registers count events on processor 
–  E.g. floating point instructions 
–  Many possible events 
–  Only a few (~4 counters) 

HPC Perf Tool Mechanisms  



Typical Tool Use Requirements 

•  (Sometimes) Modify your code with 
macros, API calls, timers 
•  Compile your code 
•  Transform your binary for profiling/
tracing with a tool 
•  Run the transformed binary 

–  A data file is produced 
•  Interpret the results with a tool 
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Performance Tools @ NERSC 

•  Vendor Tools: 
–  CrayPat 

•  Community Tools : 
–  TAU (U. Oregon via ACTS) 
–  PAPI (Performance Application 
Programming Interface) 
–  gprof 

•  IPM: Integrated Performance Monitoring 
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What HPC tools can tell us? 

•  CPU and memory usage 
–  FLOP rate 
–  Memory high water mark 

•  OpenMP 
–  OMP overhead 
–  OMP scalability (finding right # threads)  

•  MPI 
–  % wall time in communication 
–  Detecting load imbalance 
–  Analyzing message sizes 
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Tools can add overhead to code execution 
•  What level can you tolerate? 
 
Tools can add overhead to scientists  
•  What level can you tolerate? 

Scenarios: 
•  Debugging a code that is “slow” 
•  Detailed performance debugging 
•  Performance monitoring in production 
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Using the right tool 



Introduction to CrayPat 

•  Suite of tools to provide a wide range of 
performance-related information 
 

•  Can be used for both sampling and tracing 
user codes 
–  with or without hardware or network performance 

counters 
–  Built on PAPI 

•  Supports Fortran, C, C++, UPC, MPI, Coarray 
Fortran, OpenMP, Pthreads, SHMEM 

•  Man pages 
–  intro_craypat(1), intro_app2(1), intro_papi(1) 

18 



Using CrayPat @ Hopper 

1.  Access the tools 
–  module load perftools!

2.  Build your application; keep .o files 
–  make clean!
–  make!

3.  Instrument application 
–  pat_build ... a.out!
–  Result is a new file, a.out+pat!

4.  Run instrumented application to get top time consuming 
routines 

–  aprun ... a.out+pat!
–  Result is a new file XXXXX.xf (or a directory containing .xf files) 

5.  Run pat_report on that new file; view results 
–  pat_report  XXXXX.xf  > my_profile!
–  vi my_profile!
–  Result is also a new file: XXXXX.ap2 
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Guidelines for Optimization 
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* Suggested by Cray 

Derived metric Optimization needed when* PAT_RT_HWP
C 

Computational intensity < 0.5 ops/ref 0, 1 
L1 cache hit ratio < 90% 0, 1, 2 
L1 cache utilization (misses) < 1 avg hit 0, 1, 2 
L1+L2 cache hit ratio < 92% 2 
L1+L2 cache utilization 
(misses) < 1 avg hit 2 

TLB utilization < 0.9 avg use 1 
(FP Multiply / FP Ops) or 
(FP Add / FP Ops) < 25% 5 

Vectorization < 1.5 for dp; 3 for sp 12 (13, 14) 



Perf Debug and Production Tools 

•  Integrated Performance Monitoring 
•  MPI profiling, hardware counter 

metrics, POSIX IO profiling 
•  IPM requires no code modification & 

no instrumented binary 
–  Only a “module load ipm” before running 

your program on systems that support 
dynamic libraries 

–  Else link with the IPM library 
•  IPM uses hooks already in the MPI 

library to intercept your MPI calls and 
wrap them with timers and counters 
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IPM: Let’s See 

1) Do “module load ipm”, link with 
$IPM, then run normally 

2) Upon completion you get  
 
 
 
 
 

Maybe that’s enough. If so you’re done.  
Have a nice day  ! 

##IPM2v0.xx################################################## 
# 
# command   : ./fish -n 10000            
# start     : Tue Feb 10 11:05:21 2012   host      : nid06027         
# stop      : Tue Feb 10 11:08:19 2012   wallclock : 177.71 
# mpi_tasks : 25 on 2 nodes              %comm     : 1.62 
# mem [GB]  : 0.24                       gflop/sec : 5.06 
… 
 



IPM : IPM_PROFILE=full 
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!
# host   : s05601/006035314C00_AIX        mpi_tasks : 32 on 2 nodes!
# start  : 11/30/04/14:35:34              wallclock : 29.975184 sec!
# stop   : 11/30/04/14:36:00              %comm     : 27.72!
# gbytes : 6.65863e-01 total              gflop/sec : 2.33478e+00 total!
#                         [total]         <avg>           min           max!
# wallclock                  953.272       29.7897       29.6092       29.9752!
# user                        837.25       26.1641         25.71         26.92!
# system                        60.6       1.89375          1.52          2.59!
# mpi                        264.267       8.25834       7.73025       8.70985!
# %comm                                    27.7234       25.8873       29.3705!
# gflop/sec                  2.33478     0.0729619      0.072204     0.0745817!
# gbytes                    0.665863     0.0208082     0.0195503     0.0237541!
# PM_FPU0_CMPL           2.28827e+10   7.15084e+08   7.07373e+08   7.30171e+08!
# PM_FPU1_CMPL           1.70657e+10   5.33304e+08   5.28487e+08   5.42882e+08!
# PM_FPU_FMA             3.00371e+10    9.3866e+08   9.27762e+08   9.62547e+08!
# PM_INST_CMPL           2.78819e+11   8.71309e+09   8.20981e+09   9.21761e+09!
# PM_LD_CMPL             1.25478e+11   3.92118e+09   3.74541e+09   4.11658e+09!
# PM_ST_CMPL             7.45961e+10   2.33113e+09   2.21164e+09   2.46327e+09!
# PM_TLB_MISS            2.45894e+08   7.68418e+06   6.98733e+06   2.05724e+07!
# PM_CYC                  3.0575e+11   9.55467e+09   9.36585e+09   9.62227e+09!
#                           [time]       [calls]        <%mpi>      <%wall>!
# MPI_Send                   188.386        639616         71.29        19.76!
# MPI_Wait                   69.5032        639616         26.30         7.29!
# MPI_Irecv                  6.34936        639616          2.40         0.67!
# MPI_Barrier              0.0177442            32          0.01         0.00!
# MPI_Reduce              0.00540609            32          0.00         0.00!
# MPI_Comm_rank           0.00465156            32          0.00         0.00!
# MPI_Comm_size          0.000145341            32          0.00         0.00!



Analyzing IPM Data 

Communication time 
per type of MPI call 

CDF of time per MPI call over message 
sizes 

Pairwise com- 
munication volume  
(comm. topology) 



Tracing: Hard but Thorough 

Time " 

M
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Sync 

Flops 

Exchange 



26 

•  There is a tradeoff between vendor-
specific and vendor neutral tools 

–  Each have their roles, vendor tools can 
often dive deeper 

•  Portable approaches allow apples-to-
apples comparisons 

–  Events, counters, metrics may be 
incomparable across vendors 

•  You can find printf most places 
–  Put a few timers in your code? 

Advice: Develop (some) portable approaches to 
app optimization  



So you run your code with a perf tool 
and get some numbers…what do 

they mean? 
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Performance: Definitions 
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Be aware there are 
multiple  
definitions for these 
terms 

How do we measure performance? 
 
Speed up = Ts/Tp(n) 
Efficiency = Ts/(n*Tp(n)) 
 
n=cores, s=serial, p=parallel  
 
Isoefficiency: contours of  
constant efficiency amongst all  
problem sizes and concurrencies 
 



Parallel speedups for  x#x, how much? 
# C

P
U

s (threads via O
penM

P
) 



Systematic Perf Measurement 

•  Scaling studies involve changing the 
degree of parallelism. Will we be 
changing the problem also? 

 
•  Strong scaling : Fixed problem size 
•  Weak scaling: Problem size grows with 

additional resources 
 
•  Optimization: Is the concurrency 

chosing the problem size or vice versa? 



Sharks and Fish: Cartoon 

Data: 
n_fish is global 
my_fish is local 
fishi = {x, y, …} 
 
Dynamics: 

MPI_Allgatherv(myfish_buf, len[rank], .. 

 for (i = 0; i < my_fish; ++i) {                         
        for (j = 0; j < n_fish; ++j) {  //  i!=j  
         ai += g * massj * ( fishi – fishj ) / rij 
        } 
} 

Move fish 
qHp
pHq

VKH
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V
ij ijr
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See a glimpse here: 
http://www.leinweb.com/snackbar/wator/ 

 



Running  on a NERSC machine  
•  100 fish can move 1000 steps in 

1 task  "  5.459s 
32 tasks  "  2.756s 
 

•  1000 fish can move 1000 steps in  
1 task  "  511.14s 
32 tasks  "  20.815s 

•  What’s the “best” way to run? 
–  How many fish do we really have? 
–  How large a computer do we have? 
–  How much “computer time” i.e. allocation do we have?  
–  How quickly, in real wall time, do we need the answer? 

Sharks and Fish Results 

x 24.6 speedup 

x 1.98 speedup 



Good 1st Step: Do runtimes make sense? 

1 Task 

32 Tasks 

… 

Running  fish_sim for 100-1000 fish on 1-32 CPUs we see 



Isoeffciencies 
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Too much communication 



Scaling studies are  
not always so simple 
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How many perf measurements? 

With a particular goal in mind, we systematically 
vary concurrency and/or problem size 
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Example: 
 

How large a  3D (n^3)  
FFT can I efficiently  
run on 1024 cpus? 

 
Looks good? 

$ 
$ 

$ 

$ 
$ 



The scalability landscape 

–  Algorithm 
complexity  or 
switching 

–  Communication 
protocol 
switching 

–  Inter-job 
contention 

–  ~bugs in vendor 
software 

 

"
 W

hoa! 

Why so bumpy? 
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Not always so tricky 

Main loop in jacobi_omp.f90; ngrid=6144 and maxiter=20  



Scaling Studies at Scale 

Wallclock scaling
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%  Gyrokinetic Toroidal Code 
(fusion simulation) 

–  OpenMP enabled 4/6 threads 
–  Scaling up to 49152 cores 
–  3 machines 



Let’s look at scaling performance in more depth. 
A key impediment is often load imbalance 
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Load Imbalance : Pitfall 101 

MPI ranks sorted by total communication time  

Communication Time: 64 tasks show 200s, 960 tasks show 230s 



Load imbalance is pernicious 
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keep 
checking  

it 



Load Balance : cartoon 

 
 
 

 
 

 

 

Universal App    Unbalanced: 

Balanced: 

Time saved by load balance 



Load Balance: Summary 

• Imbalance often a byproduct of  
1) data decomposition or 2) multi-core concurrency quirks 

• Must be addressed before further MPI tuning can happen 
• For regular grids consider padding or contracting 
• Good software exists for graph partitioning / remeshing  

 

• Dynamical load balance may be required for adaptive codes 



Other performance scenarios 
 
 



Simple Stuff: 
What’s wrong here? 

This is  
why we  
need perf  
tools that 
are easy 
to use 

IPM  
Profile 



Not so simple: Comm. topology 

MILC 

PARATEC IMPACT-T CAM 

MAESTRO GTC 
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Application Topology 



Performance in Batch Queue Space 
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Consider your 
schedule 

•  Charge factor 
•  regular vs. low 

•  Scavenger 
queues 

•  Xfer queues 
•  Downshift 

concurrency  

 

Consider the queue 
constraints 

•  Run limit  
•  Queue limit  
•  Wall limit  

•  Soft (can you 
checkpoint?)  
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A few notes on queue optimization 

Jobs can submit other jobs 



Marshalling your own workflow  

•  Lots of choices in general 
–  Hadoop, CondorG, MySGE 

•  On hopper it’s easy 
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#PBS -l mppwidth=4096 
aprun –n 512 ./cmd & 
aprun –n 512 ./cmd & 
… 
aprun –n 512 ./cmd & 
 
wait 
 

#PBS -l mppwidth=4096 
while(work_left) { 
 if(nodes_avail) { 
 aprun –n X next_job & 
 } 
wait 
} 
 



Contacts: 
help@nersc.gov 
deskinner@lbl.gov  
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Thanks! 
 

Formulate 
Research 
Problem  

Coding 

Debug Perf 
Debug 

jobs jobs 
jobs jobs  

Queue 
Wait 

Data? 

UQ 
VV 

Understand 
& Publish! 


