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What is Tera-scale?
TIPs of compute power operating on Tera-bytes of data
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R = Recognition
M = Mining
S = Synthesis

• Based on modeling or simulating the real world

• Make technology more immersive and human-like

• Algorithms are highly parallel in nature

• Real-time results essential 
for user-interaction

Web search
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Tera-scale Computing Applications
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In 2004, these observations led us to explore tera-scale
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A Tera-scale Platform Vision

Scalable On-die Interconnect Fabric
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Tera-scale Research

Cores – power efficient general & special function

Interconnects – High bandwidth, low latency

Memory Hierarchy – Feed the compute engine

System Software – Scalable services

Programming – Empower the mainstream

Applications – Identify, characterize & optimize
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Future 3D Internet
Immersive Connected Experiences

Bringing the richness of Visual Computing to connected usage models 
such as social networking, collaboration, online gaming, & online retail.

3D Digital 
Entertainment

Virtual Worlds

Creating new
digital worlds

Multiplayer Games

Internet
Data

People
Everywhere

The Actual
World

C
O

N
N

E
C
T
E
D

C
O

N
N

E
C
T
E
D

CONNECTED

Rich
Visual

Interfaces

LIMITED RICH

Better content quality, social interaction

Static
Web Web 2.0 ICE

Real-world data
visualization

Enhancing the
actual world

Earth  Mapping

Augmented Reality

Applications



88

Application Kernel Scaling
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http://graphics.stanford.edu/~fedkiw/animations/water_oil.avi
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SERVERS: 10x More Work
75%+ Time = Compute Intensive Work 

TYPE SOFTWARE
MAX CLIENTS

PER SERVER

MMORPGS

VWs Second Life 160

WoW 2500

APPLICATION

% CPU

UTILIZATION
% GPU
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CLIENTS: 3x CPU, 20x GPU 
65%+ Time = Compute Intensive Work

Second Life 70 35-75
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Server to Client

0

50

10
0

25 50 75 100 125 150
Time (In Seconds)

B
an

d
w

id
th

(I
n

 K
B

/s
))

Cached
Uncached

Sources: WoW data (source www.warcraftrealms.com), Second Life data (source CTO-CTO 
meeting and www.secondlife.com), and Intel measurements.

Platform Performance Demands
Emerging ICE applications

Applications
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Application Acceleration:
HW Task Queues

88% benefit optimized S/W 98% benefit over optimized S/W

Loop Level Parallelism Task Level Parallelism

GTUC1

$1
C2

C7

Cn
$m

$5

Core

L1 $ LTU

Global Task Unit (GTU)
Caches the task pool
Uses distributed task stealing

Local Task Unit (LTU)
Prefetches and buffers tasks

GTU

Carbon: Architectural Support for Fine-Grained Parallelism on Chip Multiprocessors. Sanjeev Kumar 
Christopher J. Hughes Anthony Nguyen,  ISCA’07, June 9–13, 2007, San Diego, California, USA.

Task Queues
• scale effectively to many cores
• deal with asymmetry
• supports task & loop parallelism

Applications
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Design Pattern Language

11

Graph Algorithms

Dynamic Programming

Dense Linear Algebra

Sparse Linear Algebra

Unstructured Grids

Structured Grids

Model-view controller 
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Applications
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Choose your high level 

structure – what is the 

structure of my 

application?  Guided 

expansion

Identify the key 

computational patterns 

– what are my key 

computations?

Guided instantiation

Implementation methods – what are the building blocks of parallel programming? Guided implementation

Choose your high level architecture - Guided decomposition

Refine the structure  - what concurrent approach do I use? Guided re-organization

Utilize Supporting Structures – how do I implement my concurrency? Guided mapping
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Digital Circuits
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Programming

Keutzer , K., Mattson, T.: “A Design Pattern Language for Engineering (Parallel) Software” to appear in Intel 
Technology Journal.
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Transactional Memory

• TM Definition - a sequence of memory operations that either execute 

completely (commit) or have no effect (abort)

• Goal – an atomic block language construct
– As easy to use as coarse-gain locks, 

but with the scalability of fine-grain locks

– Safe and scalable composition of SW modules

• Intel C/C++ STM compiler
– Use for experimentation & workload development

– Downloadable from http://whatif.intel.com

• Draft specification adding TM to C++ 
– Jointly authored with IBM & Sun

– Discussion on tm-languages@googlegroups.com

Programming

Shpeisman, T. et. Al  Towards Transactional Memory Semantics for C++, 
SPAA’09, August 11–13, 2009, Calgary, Alberta, Canada.

http://whatif.intel.com/
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Ct Technology 
An example of Intel turning research into reality

A new programming model, abstract machine and API

• Expresses data parallelism with sequential semantics

• Deterministic (race-free) parallel programming  

• Degree of thread/vector parallelism targeted dynamically according to user’s 
multi-core and SIMD hardware 

• Extends C++: Uses templates for new types, 
operator overloading and lib calls for new operators

New Parallel 
Ops & Data 
Structures

Irregular/Sparse
Parallel Data
(Ex: Face Recog) 

Dynamic Compilation 
Runtime Delivers on-
the-fly Parallelization

Scalable  with 
Increasing Cores

Programming

http://software.intel.com/en-us/data-parallel/
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Heterogeneous platform support
• Shared virtual memory in a mixed 

ISA, multiple OS environment 

• Simplified programming model with 
data structure and pointer sharing

Saha, Bratin, et al.  “Programming Model for a Heterogeneous x86 Platform.”   
PLDI ’09 June 15-20, 2009, Dublin, Ireland, 

Programming
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OS Scheduling
Fairness on Multi-core

• Distributed Weighted Round 
Robin scheduling

– Accurate fairness

– Efficient and scalable operation

– Flexible user control

– High performance 

• Implementation

– Additional queue per core

– Monitor runtime per round

– Balance across cores

• Evaluated against Linux

– O(1) scheduler 2.6.22.15

– CFS scheduler 2.6.24

System SW

Maximum lag and relative error  for 16 threads 
on 8 cores,  5 threads have nice one.

Performance on Benchmarks v Linux CFS alone

Li, Tong, et al. Efficient and Scalable Multiprocessor Fair Scheduling Using Distributed Weighted Round-
Robin. PPoPP’09, February 14–18, 2009, Raleigh, North Carolina, USA
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On-Die Fabric Research 
Adaptive Routing

Adversarial traffic can severely affect network throughput

Example: Matrix transpose
– XY routing does not use all available paths
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Transpose with XY

Flexible routing allows all paths to be used

A fully-adaptive scheme provides the best throughput under different traffic patterns 
but has to consider large set of constraints, e.g.

 No resource bifurcation (required by virtual networks)

 Minimal storage/power overhead

 Zero latency impact

Interconnect
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Teraflops Research Processor

Goals:

• Deliver Tera-scale performance
– Single precision TFLOP at desktop power

– Frequency target 5GHz

– Bi-section B/W order of Terabits/s

– Link bandwidth in hundreds of GB/s

• Prototype two key technologies
– On-die interconnect fabric

– 3D stacked memory

• Develop a scalable design 
methodology
– Tiled design approach

– Mesochronous clocking

– Power-aware capability
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Interconnect
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Power Performance Results
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Vangal, S., et al., “An 80-Tile 1.28TFLOPS Network-on-Chip in 65 nm CMOS,” 
in Proceedings of ISSCC 2007(IEEE International Solid-State Circuits Conference), Feb. 12, 2007.

Interconnect
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CPU + DRAM

I/O Circuits

Optimized for power efficiency & silicon cost
• Very low I/O power
• Aggressive power management
• Small silicon area and low complexity
• Scalability in bandwidth and width

Tiled DRAM

Memory

Platform

interconnect
Develop (prove out) new platform physicals 
• High density, small form factor
• Low loss & reflections
• Headroom for future scaling
• Low cost & modularity

CPU mem

controller

Reduce memory controller power & complexity
• Increased number of banks per channel
• Increased concurrency for accessing memory array
• Scalable & flexible across a wide range of market segments
• Lower latency of on-die cache miss to data returned from DRAM

DRAM Arch
Optimize for low power, high concurrency
• Very low energy per bit read and written
• Investigate the role of three dimensional
stacked products
• Work with DRAM vendors

Memory

O’Mahoney, F., et al., “A 27Gb/s Forwarded-Clock I/O Receiver using an injection-Locked LC-DCO in 45nm CMOS,” 
in Proceedings of ISSCC 2008(IEEE International Solid-State Circuits Conference), Feb. 12, 2008.
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CPU + DRAM

I/O Circuits

Optimized for power efficiency & silicon cost
• Very low I/O power
• Aggressive power management
• Small silicon area and low complexity
• Scalability in bandwidth and width

Tiled DRAM

Memory

Platform

interconnect
Develop (prove out) new platform physicals 
• High density, small form factor
• Low loss & reflections
• Headroom for future scaling
• Low cost & modularity

CPU mem

controller

Reduce memory controller power & complexity
• Increased number of banks per channel
• Increased concurrency for accessing memory array
• Scalable & flexible across a wide range of market segments
• Lower latency of on-die cache miss to data returned from DRAM

DRAM Arch
Optimize for low power, high concurrency
• Very low energy per bit read and written
• Investigate the role of three dimensional
stacked products
• Work with DRAM vendors

Increasing I/O Efficiency
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O’Mahoney, F., et al., “A 27Gb/s Forwarded-Clock I/O Receiver using an injection-Locked LC-DCO in 45nm CMOS,” 
in Proceedings of ISSCC 2008(IEEE International Solid-State Circuits Conference), Feb. 12, 2008.
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Increasing power efficiency
Low-power scalable SIMD Vector processing

• 45nm CMOS occupies 0.081mm2  

• Signed 32b multiply using reconfigurable16b multipliers and adder circuits

• Operation from 1.3V down to ultra-low 230MV

• 2.3GHz, 161mW operation at 1.1V

• Peak SIMD energy efficiency of 494GOPS/W measured at 300mV, 50°C.

Energy-efficiency up to 10X better at normal voltages 

Up to 80x better at ultra-low voltages

Kaul, H., et al., “A 300mV 494GOPS/W Reconfigurable Dual-Supply 4-way SIMD Vector Processing Accelerator in 45nm CMOS,”  
in Proceedings of ISSCC 2009 (IEEE International Solid-State Circuits Conference), Feb. 2009.

Cores
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Within-Die Variation-Aware
DVFS and scheduling 

• Max Frequency variation per core 28% at 1.2V 62% at 0.8V

• No correlation die to die – individual characterization required

• Improved performance or energy efficiency with:
– Multiple frequency islands 

– Dynamic scheduling of processing to core

Dighe, S, et al., “Within-Die Variation-Aware Dynamic Voltage-Frequency Scaling, Core 
Mapping and Thread Hopping for an 80-Core Processor”, in Proceedings of ISSCC 2010 (IEEE 
International Solid-State Circuits Conference), Feb. 2010

Cores
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Experimental Single-chip Cloud Computer
• Experimental many-core CPU on 45nm Hi-K metal-gate silicon

• 48 IA-compatible cores – the most ever built on a single chip 

• Message-passing architecture – no HW cache coherence

• Research Vehicle

• Fine-grained software-controlled power management

• Scale-out programming models on-die
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Collaboration

Howard, J, et al., “A 48-Core IA-32 Message-Passing Processor with DVFS in 45nm CMOS”, in 
Proceedings of ISSCC 2010 (IEEE International Solid-State Circuits Conference), Feb. 2010
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Summary

• Intel research is addressing the challenges of 
parallel computing with Intel platforms

– Teraflop hardware performance within mainstream power 
and cost constraints

– ISA enhancements to address emerging workload 
requirements

– Language and runtimes to better support parallel 
programming models 

– Partnering with academic research

• Intel is developing hardware and software 
technologies to enable Tera-scale computing
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Q&A
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