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Programming Distributed 
Memory Systems with MPI  

Tim Mattson 

Intel Labs. 

 

With content from Kathy Yelick, Jim Demmel, Kurt Keutzer (CS194) and others 

in the UCB EECS community.     www.cs.berkeley.edu/~yelick/cs194f07,  
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Tracking Supercomputers: Top500 

 Top500: a list of the 500 fastest computers in the world (www.top500.org) 

 Computers ranked by solution to the MPLinpack benchmark: 

 Solve Ax=b problem  for any order of A 

 List released twice per year: in June and November 

Current number 1 (June 2013)  33.9 PFLOPS 

Tianhe-2, NUDT, Intel Ivy Bridge + Xeon Phi 

16.3 PFLOPS, >1.5 million cores 

1 PFLOP 

1 TFLOP 

Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf 
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The birth of Supercomputing 

 The CRAY-1A: 

 2.5-nanosecond clock,  

 64 vector registers, 

 1 million 64-bit words of high-

speed memory.  

 Peak speed: 

• 80 MFLOPS scalar. 

• 250 MFLOPS vector (but 

this was VERY hard to 

achieve) 

 Cray software … by 1978  

 Cray Operating System 

(COS),  

 the first automatically 

vectorizing Fortran compiler 

(CFT), 

 Cray Assembler Language 

(CAL) were introduced.  

 

 On July 11, 1977, the CRAY-1A, serial 

number 3, was delivered to NCAR. The 

system cost was $8.86 million ($7.9 

million plus $1 million for the disks).  

http://www.cisl.ucar.edu/computers/gallery/cray/cray1.jsp 
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History of Supercomputing:  

The Era of the Vector Supercomputer  Large mainframes that operated on vectors of data 

 Custom built, highly specialized hardware and software 

 Multiple processors in an shared memory configuration 

 Required modest changes to software (vectorization) 

The Cray C916/512 at the Pittsburgh 

Supercomputer Center 
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The attack of the killer micros 

 The Caltech Cosmic 

Cube developed by 

Charles Seitz and 

Geoffrey Fox in1981 

 64 Intel 8086/8087 

processors 

 128kB of memory per 

processor 

 6-dimensional hypercube 

network 

 

http://calteches.library.caltech.edu/3419/1/Cubism.pdf 

 

The cosmic cube, Charles Seitz 

Communications of the ACM, Vol 28, number 1 January 

1985, p. 22  

Launched the “attack of 

the killer micros”  
Eugene Brooks, SC’90 

http://calteches.library.caltech.edu/3419/1/Cubism.pdf
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It took a while, but MPPs came to 

dominate supercomputing 

 Parallel computers with large numbers of microprocessors  

 High speed, low latency, scalable interconnection networks  

 Lots of custom hardware to support scalability 

 Required massive changes to software (parallelization)  

Paragon XPS-140 at Sandia 

National labs in Albuquerque 
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The cost advantage of mass market COTS 

 MPPs using Mass market Commercial off the shelf (COTS) 

microprocessors  and standard memory and I/O components 

 Decreased hardware and software costs makes huge systems 

affordable 
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11 

The MPP future looked bright … but 

then clusters took over 

 A cluster is a collection of connected, independent computers that work 

in unison to solve a problem. 

 Nothing is custom … motivated users could build cluster on their own 

 

 
 First clusters appeared in 

the late 80’s (Stacks of 

“SPARC pizza boxes”) 

 The Intel Pentium Pro in 

1995 coupled with Linux 

made them competitive. 

 NASA Goddard’s Beowulf 

cluster demonstrated 

publically that high visibility 

science could be done on 

clusters. 

 Clusters made it easier to 

bring the benefits due to 

Moores’s law into working 

supercomputers 
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Top 500 list: System Architecture  

*Constellation: A cluster for which the  number of processors on a node is greater than the number of 

nodes in the cluster.  I’ve never seen anyone use this term outside of the top500 list. 

* 

Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf 
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MPI (1992-today) 

 The message passing interface (MPI) is a standard library 

 MPI Forum first met April 1992,  

 MPI 1.0 in June 1994 

 MPI  2.0 in July 1997 

 MPI 3.0 in September 2012 

 Hardware-portable, multi-language communication library 

 Enabled billions of dollars of applications 

 Work on MPI 3.1 and 4.0 is in progress.     

MPI Forum, March 2008, Chicago 

15 
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MPI Hello World 

#include <stdio.h> 

#include <mpi.h> 

int main (int argc, char **argv){ 

    int rank, size; 

    MPI_Init (&argc, &argv); 

    MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

    MPI_Comm_size (MPI_COMM_WORLD, &size); 

    printf( "Hello from process %d of %d\n", 

                                rank, size ); 

    MPI_Finalize(); 

    return 0; 

} 
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Initializing and finalizing MPI 

#include <stdio.h> 

#include <mpi.h> 

int main (int argc, char **argv){ 

    int rank, size; 

    MPI_Init (&argc, &argv); 

    MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

    MPI_Comm_size (MPI_COMM_WORLD, &size); 

    printf( "Hello from process %d of %d\n", 

                                rank, size ); 

    MPI_Finalize(); 

    return 0; 

} 

int MPI_Init (int* argc, char* argv[]) 

 Initializes the MPI library … called before any 

other MPI functions. 

 agrc and argv are the command line args passed 

from main() 

int MPI_Finalize (void) 

 Frees memory allocated by the MPI library … close 
every MPI program with a call to MPI_Finalize 
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How many processes are involved? 

#include <stdio.h> 

#include <mpi.h> 

int main (int argc, char **argv){ 

    int rank, size; 

    MPI_Init (&argc, &argv); 

    MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

    MPI_Comm_size (MPI_COMM_WORLD, &size); 

    printf( "Hello from process %d of %d\n", 

                                rank, size ); 

    MPI_Finalize(); 

    return 0; 

} 

int MPI_Comm_size (MPI_Comm comm, int* size) 

 MPI_Comm, an opaque data type, a communication context.  Default 

context: MPI_COMM_WORLD (all processes)  

 MPI_Comm_size returns the number of processes in the process 

group associated with the communicator 

Communicators consist of 

two parts, a context and a 

process group.   

 

The communicator lets me 

control how groups of 

messages interact. 

 

The communicator lets me 

write modular SW … i.e. I 

can give a library module its 

own communicator and 

know that it’s messages 

can’t collide with messages 

originating from outside the 

module 
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Which process “am I” (the rank) 

#include <stdio.h> 

#include <mpi.h> 

int main (int argc, char **argv){ 

    int rank, size; 

    MPI_Init (&argc, &argv); 

    MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

    MPI_Comm_size (MPI_COMM_WORLD, &size); 

    printf( "Hello from process %d of %d\n", 

                                rank, size ); 

    MPI_Finalize(); 

    return 0; 

} 

int MPI_Comm_rank (MPI_Comm comm, int* rank) 

 MPI_Comm, an opaque data type, a communication context.  Default 

context: MPI_COMM_WORLD (all processes)  

 MPI_Comm_rank An integer ranging from 0 to “(num of procs)-1” 

Note that other than init() 

and finalize(), every MPI 

function has a 

communicator. 

 

This makes sense .. You 

need a context and group of 

processes that the MPI 

functions impact … and 

those come from the 

communicator. 
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Running the program 

#include <stdio.h> 

#include <mpi.h> 

int main (int argc, char **argv){ 

    int rank, size; 

    MPI_Init (&argc, &argv); 

    MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

    MPI_Comm_size (MPI_COMM_WORLD, &size); 

    printf( "Hello from process %d of %d\n", 

                                rank, size ); 

    MPI_Finalize(); 

    return 0; 

} 

 On a 4 node cluster with 

MPIch2, I’d run this program 

(hello) as: 

       > mpicc hello.c –o hello 

> mpiexec –n 4 –f hostf hello 

Hello from process 1 of 4 

Hello from process 2 of 4 

Hello from process 0 of 4 

Hello from process 3 of 4 

• Where “hostf” is a file with the 

names of the cluster nodes, 

one to a line. 
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Sending and Receiving Data 

 MPI_Send performs a blocking send of the specified data (“count” 

copies of type “datatype,” stored in “buf”) to the specified destination 

(rank “dest” within communicator “comm”), with message ID “tag” 

int MPI_Send (void* buf, int count, 

 MPI_Datatype datatype, int dest, 

 int tag, MPI_Comm comm)   

 

int MPI_Recv (void* buf, int count, 

 MPI_Datatype datatype, int source, 

 int tag, MPI_Comm comm, 

 MPI_Status* status) 

 

 MPI_Recv performs a blocking receive of specified data from specified 

source whose parameters match the send; information about transfer is 

stored in “status” 

By “blocking” we mean the functions return as soon as the buffer, “buf”, can be 

safely used. 
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The data in a message: datatypes 

 The data in a message to send or receive is described by a triple: 

  (address, count, datatype) 

 An MPI datatype is recursively defined as: 

 Predefined, simple data type from the language (e.g., MPI_DOUBLE) 

 Complex data types (contiguous blocks or even custom types). 

 E.g.  … A particle’s state is defined by its 3 coordinates and 3 velocities 

MPI_Datatype PART; 

MPI_Type_contiguous( 6, MPI_DOUBLE, &PART ); 

MPI_Type_commit( &PART ); 

 You can use this data type in MPI functions, for example, to send data for a 

single particle: 

   MPI_Send (buff, 1, PART, Dest, tag, MPI_COMM_WORLD); 

address 
count 

Datatype 
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Receiving the right message 

 The receiving process identifies messages with the double : 

  (source, tag) 

 Where: 

 Source is the rank of the sending process 

 Tag is a user-defined integer to help the receiver keep track of different 

messages from a single source 

 

   MPI_Recv (buff, 1, PART, Src, tag, MPI_COMM_WORLD, &status); 

Source tag 

 Can relax tag checking by specifying MPI_ANY_TAG as the tag in a receive. 

 Can relax source checking by specifying MPI_ANY_SOURCE 

   MPI_Recv (buff, 1, PART, MPI_ANY_SOURCE, MPI_ANY_TAG,  

                                                               MPI_COMM_WORLD, &status); 

 This is a useful way to insert race conditions into an MPI program 
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How do people use MPI? 

The SPMD Design Pattern 

Replicate the program. 

Add glue code 

Break up the data 

A sequential program 

working on a data set 

•A  single program working on a 

decomposed data set. 

•Use Node ID and numb of nodes to 

split up work between processes 

• Coordination by passing messages. 
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A Simple MPI Program 

#include “mpi.h” 
#include <stdio.h> 

int main( int argc, char *argv[]) 

{ int rank, buf; 

  MPI_Status status; 

  MPI_Init(&argv, &argc);    

  MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 

  /* Process 0 sends and Process 1 receives */ 

  if (rank == 0) { 

    buf = 123456; 

    MPI_Send( &buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD); 

  } 

  else if (rank == 1) { 

    MPI_Recv( &buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,  

              &status ); 

    printf( “Received %d\n”, buf ); 
  } 

  MPI_Finalize(); 

  return 0; 

} 

Slide source: Bill Gropp, ANL 
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Buffers 

 Message passing has a small set of primitives, but there are subtleties 

 Buffering and deadlock 

 Deterministic execution 

 Performance  

 When you send data, where does it go?  One possibility is: 

Process 0 Process 1 

User data 

Local buffer 

the network 

User data 

Local buffer 

8/20/2013 Derived from: Bill Gropp, UIUC 
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Blocking Send-Receive Timing Diagram 
(Receive before Send) 

send side                               receive side 

MPI_Send:  T1 

T4: MPI_Recv returns 

MPI_Send returns T2 

Once receive 

is called @ T0, 

Local buffer unavailable 

to user 

Local buffer filled and  

available to user 

It is important to post the receive before 

sending, for highest performance.  

T0: MPI_Recv 

Local 

buffer can 

be reused 

T3: Transfer Complete 

time time 
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 Send a large message from process 0 to process 1 

 If there is insufficient storage at the destination, the send 
must wait for the user to provide the memory space (through 
a receive) 

 What happens with this code? 
 
 
 
 

 

Sources of Deadlocks 

Process 0 

 
Send(1) 

Recv(1) 

Process 1 

 
Send(0) 

Recv(0) 

• This code could deadlock … it depends on the 
availability of system buffers in which to store the data 
sent until it can be received  

Slide source: based on slides from Bill Gropp, UIUC 
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Some Solutions to the “deadlock” Problem 

 Order the operations more carefully: 

• Supply receive buffer at same time as send: 

Process 0 

 
Send(1) 

Recv(1) 

Process 1 

 
Recv(0) 

Send(0) 

Process 0 

 

Sendrecv(1) 

Process 1 

 
Sendrecv(0) 

8/20/2013 Slide source: Bill Gropp, UIUC 
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More Solutions to the “unsafe” Problem 

 Supply a sufficiently large buffer in the send function 

• Use non-blocking operations: 

Process 0 

 
Bsend(1) 

Recv(1) 

Process 1 

 
Bsend(0) 

Recv(0) 

Process 0 

 
Isend(1) 

Irecv(1) 

Waitall 

Process 1 

 
Isend(0) 

Irecv(0) 

Waitall 

8/20/2013 Slide source: Bill Gropp, UIUC 
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Non-Blocking Communication 

 Non-blocking operations return immediately and pass ‘‘request handles” 
that can be waited on and queried 

 

• MPI_ISEND( start, count, datatype, dest, tag, comm, request ) 

• MPI_IRECV( start, count, datatype, src, tag, comm, request ) 

• MPI_WAIT( request, status ) 

 

 One can also test without waiting using  MPI_TEST 

 

• MPI_TEST( request, flag, status ) 

 

 Anywhere you use MPI_Send or  MPI_Recv, you can use the pair of 
MPI_Isend/MPI_Wait or  MPI_Irecv/MPI_Wait 

Non-blocking operations are extremely important … they 

allow you to overlap computation and communication. 
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buffer unavailable 

to user 

Non-Blocking Send-Receive Diagram 

send side             receive side 

MPI_Isend 

T8: MPI_Wait returns 

T3 buffer unavailable 

to user 

receive buffer 

filled and available 

to the user 

T0: MPI_Irecv 

T7: transfer finishes 

T4: MPI_Wait called 

MPI_Wait 

T1: MPI_Irecv Returns 

T5 

time time 

T2 

MPI_Isend returns 

T6 

T9 

Sender completes 

MPI_Wait returns 

buffer available 

to user 
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Example: shift messages around a ring 

(part 1 of 2) 

#include <stdio.h> 

#include <mpi.h> 

 

int main(int argc, char **argv) 

{ 

  int num, rank, size, tag, next, from; 

  MPI_Status status1, status2; 

  MPI_Request req1, req2; 

 

  MPI_Init(&argc, &argv); 

  MPI_Comm_rank( MPI_COMM_WORLD, &rank); 

  MPI_Comm_size( MPI_COMM_WORLD, &size); 

  tag = 201; 

  next = (rank+1) % size; 

  from = (rank + size - 1) % size; 

  if (rank == 0) { 

    printf("Enter the number of times around the ring: "); 

    scanf("%d", &num); 

 

    printf("Process %d sending %d to %d\n", rank, num, next); 

    MPI_Isend(&num, 1, MPI_INT, next, tag, MPI_COMM_WORLD,&req1); 

    MPI_Wait(&req1, &status1); 

  }  
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Example: shift messages around a ring 

(part 2 of 2) 
 do { 

    MPI_Irecv(&num, 1, MPI_INT, from, tag, MPI_COMM_WORLD, &req2); 

    MPI_Wait(&req2, &status2); 

    printf("Process %d received %d from process %d\n", rank, num, from); 

 

    if (rank == 0) { 

      num--; 

      printf("Process 0 decremented number\n"); 

    } 

 

    printf("Process %d sending %d to %d\n", rank, num, next); 

    MPI_Isend(&num, 1, MPI_INT, next, tag, MPI_COMM_WORLD, &req1); 

    MPI_Wait(&req1, &status1); 

  } while (num != 0); 

 

  if (rank == 0) { 

    MPI_Irecv(&num, 1, MPI_INT, from, tag, MPI_COMM_WORLD, &req2); 

    MPI_Wait(&req2, &status2); 

  } 

 

  MPI_Finalize(); 

  return 0; 

}  
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Reduction 

 int MPI_Reduce (void* sendbuf, 

  void* recvbuf, int count, 

  MPI_Datatype datatype, MPI_Op op, 

  int root, MPI_Comm comm) 

• MPI_Reduce performs specified reduction operation on specified data 

from all processes in communicator, places result in process “root” only. 

• MPI_Allreduce places result in all processes (avoid unless necessary) 

Operation Function 

MPI_SUM Summation 

MPI_PROD Product 

MPI_MIN Minimum value 

MPI_MINLOC Minimum value and location 

MPI_MAX Maximum value 

MPI_MAXLOC Maximum value and location 

MPI_LAND Logical AND 

Operation Function 

MPI_BAND Bitwise AND 

MPI_LOR Logical OR 

MPI_BOR Bitwise OR 

MPI_LXOR Logical exclusive OR 

MPI_BXOR Bitwise exclusive OR 

User-defined It is possible to define new 
reduction operations 
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Pi program in MPI  

#include <mpi.h> 

void main (int argc, char *argv[]) 

{ 

 int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ; 

 step = 1.0/(double) num_steps ; 

   MPI_Init(&argc, &argv) ; 

 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ; 

 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ; 

   

 for (i=my_id; i<num_steps;  i=i+numprocs) 

 { 

    x = (i+0.5)*step; 

    sum += 4.0/(1.0+x*x); 

 } 

 sum *= step ;  

 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 

  MPI_COMM_WORLD) ; 

} 



39 

MPI Pi program performance 

*Intel compiler (icpc) with –O3 on Apple OS X 10.7.3 with a dual core (four HW thread) 

Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 

Thread 

or procs 

OpenMP 

SPMD 

critical 

OpenMP 

PI Loop 

MPI 

1 0.85 0.43 0.84 

2 0.48 0.23 0.48 

3 0.47 0.23 0.46 

4 0.46 0.23 0.46 

Note: OMP loop used a 

Blocked loop distribution.  

The others used a cyclic 

distribution.  Serial .. 0.43. 
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Bulk Synchronous Processing 

 Many MPI applications have few (if any) sends and receives. They 

use a design pattern called “Bulk Synchronous Processing”. 

 
 Uses the Single Program Multiple Data 

pattern 

 Each process maintains a local view of 

the global data 

 A problem broken down into phases each 

composed of two subphases: 

• Compute on local view of data 

• Communicate to update global view 

on all processes (collective 

communication). 

 Continue phases until complete 

 

Collective comm. 

Collective comm. 
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MPI Collective Routines 

 Collective communications: called by all processes in the group to 

create a global result and share with all participating processes. 

 Allgather, Allgatherv, Allreduce, Alltoall, 

Alltoallv, Bcast, Gather, Gatherv, Reduce, 

Reduce_scatter, Scan, Scatter, Scatterv  

 Notes: 

 Allreduce, Reduce, Reduce_scatter, and Scan use the 
same set of built-in or user-defined combiner functions.  

 Routines with the “All” prefix deliver results to all participating 
processes 

 Routines with the “v” suffix allow chunks to have different sizes 

 Global synchronization is available in MPI 

 MPI_Barrier( comm ) 

 Blocks until all processes in the group of the communicator comm call it. 
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Collective Data Movement 

A 

B 

D 

C 

B C D 

A 

A 

A 

A 

Broadcast 

Scatter 

Gather 

A 

A 

P0 

P1 

P2 

P3 

P0 

P1 

P2 

P3 
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More Collective Data Movement 

A 

B 

D 

C 

A0 B0 C0 D0 

A1 B1 C1 D1 

A3 B3 C3 D3 

A2 B2 C2 D2 

A0 A1 A2 A3 

B0 B1 B2 B3 

D0 D1 D2 D3 

C0 C1 C2 C3 

A B C D 

A B C D 

A B C D 

A B C D 

Allgather 

Alltoall 

P0 

P1 

P2 

P3 

P0 

P1 

P2 

P3 
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Collective Computation 

P0 

P1 

P2 

P3 

P0 

P1 

P2 

P3 

A 

B 

D 

C 

A 

B 

D 

C 

ABCD 

A 
AB 

ABC 

ABCD 

Reduce 

Scan 
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MPI topics we did Not Cover 

 Topologies: map a communicator onto, say, a 3D Cartesian 

processor grid 

 Implementation can provide ideal logical to physical mapping 

 Rich set of I/O functions: individual, collective, blocking and non-

blocking 

 Collective I/O can lead to many small requests being merged 

for more efficient I/O 

 One-sided communication: puts and gets with various 

synchronization schemes 

 Implementations not well-optimized and rarely used 

 Redesign of interface is underway 

 Task creation and destruction: change number of tasks during a 

run 

 Few implementations available 
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MPI isn’t as hard as many belive … 

 There are over 330 functions in the MPI spec, but most programs 

only use a small subset: 

 Point-to-point communication 

• MPI_Irecv, MPI_Isend, MPI_Wait, MPI_Send, MPI_Recv 

 Startup 

• MPI_Init, MPI_Finalize 

 Information on the processes  

• MPI_Comm_rank, MPI_Comm_size,   

 Collective communication 

• MPI_Allreduce, MPI_Bcast, MPI_Allgather 
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Isn’t message passing much harder 
than multithreading?   

Time 

E
ffo

rt 

Extra work upfront,  but easier 
optimization and debugging means 

overall, less time to solution 
Message passing 

Time 

E
ffo

rt 

initial parallelization can be 
quite easy  

Multi-threading 

But difficult debugging and 
optimization means overall 

project takes longer  

*P. N. Klein, H. Lu, and R. H. B. Netzer, Detecting Race Conditions in Parallel Programs that Use Semaphores, Algorithmica,  vol. 35 pp. 321–345, 2003 

Proving that a shared address space program using 

semaphores is race free is an NP-complete problem* 
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MPI References 

 The Standard itself: 

 at http://www.mpi-forum.org 

 All MPI official releases, in both postscript and 

HTML 

 Other information on Web: 

 at http://www.mcs.anl.gov/mpi 

 pointers to lots of stuff, including other talks and 

tutorials, a FAQ, other MPI pages 

Slide source: Bill Gropp, ANL 

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/mpi
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Books on 

MPI 

 Using MPI:  Portable Parallel Programming  

with the Message-Passing Interface (2nd edition),  

by Gropp, Lusk, and Skjellum, MIT Press,  

1999. 

 Using MPI-2:  Portable Parallel Programming  

with the Message-Passing Interface, by Gropp,  

Lusk, and Thakur, MIT Press, 1999. 

 MPI:  The Complete Reference - Vol 1 The MPI Core, by 

Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT 

Press, 1998. 

 MPI: The Complete Reference - Vol 2 The MPI 

Extensions, by Gropp, Huss-Lederman, Lumsdaine, Lusk, 

Nitzberg, Saphir, and Snir, MIT Press, 1998. 

 Designing and Building Parallel Programs, by Ian Foster, 

Addison-Wesley, 1995. 

 Parallel Programming with MPI, by Peter Pacheco, 

Morgan-Kaufmann, 1997. 

Slide source: Bill Gropp, ANL 
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Backup 

 The key constructs of MPI 

 MPI_Init() and MPI_Finalize() 

 MPI_Comm_rize() and MPI_Comm_rank() 

 MPI_Send() and MPI_Recv() 

 MPI_Isend(), MPI_Irecv(), and MPI_Wait() 

 MPI_Bcast(), MPI_Reduce(), MPI_Gather(), and MPI_Scatter() 

 MPI_Barrier() 

To do:  I need a page for each one of these 

similar to the one I have now for MPI_send 

and MPI_Recv 
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Blocking Send and Receive 

 MPI_Send performs a blocking send of the specified data (“count” 

copies of type “datatype,” stored in “buf”) to the specified destination 

(rank “dest” within communicator “comm”), with message ID “tag” 

int MPI_Send (void* buf, int count, 

 MPI_Datatype datatype, int dest, 

 int tag, MPI_Comm comm)   

 

int MPI_Recv (void* buf, int count, 

 MPI_Datatype datatype, int source, 

 int tag, MPI_Comm comm, 

 MPI_Status* status) 

 

 MPI_Recv performs a blocking receive of specified data from specified 

source whose parameters match the send; information about transfer is 

stored in “status” 

By “blocking” we mean the functions return as soon as the buffer, “buf”, can be 

safely used. 
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Non-Blocking Comminication 

 Non-blocking operations return immediately and pass ‘‘request handles” 
that can be waited on and queried 

• MPI_ISEND( start, count, datatype, dest, tag, comm, request ) 

• MPI_IRECV( start, count, datatype, src, tag, comm, request ) 

• MPI_WAIT( request, status ) 

 One can also test without waiting using  MPI_TEST 

• MPI_TEST( request, flag, status ) 

 Anywhere you use MPI_Send or  MPI_Recv, you can use the pair of 
MPI_Isend/MPI_Wait or  MPI_Irecv/MPI_Wait 

Non-blocking operations are extremely important … they 

allow you to overlap computation and communication. 



54 

Launching and closing MPI 

 These functions “bracket” every MPI program 

int MPI_Init (int* argc, char* argv[]) 

 Initializes the MPI library … called before any 

other MPI functions. 

 agrc and argv are the command line args passed 

from main() 

int MPI_Finalize (void) 

 Frees memory allocated by the MPI library … close 
every MPI program with a call to MPI_Finalize 
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Understanding the process group 

 SPMD pattern: use the ID of each process and the size of the 

process group to choose the data manipulated or the branching 

through the program 

int MPI_Comm_size (MPI_Comm comm, int* size) 

 MPI_Comm, an opaque data type, a communication context.  Default 

context: MPI_COMM_WORLD (all processes)  

 MPI_Comm_size returns the number of processes in the process 

group associated with the communicator 

int MPI_Comm_rank (MPI_Comm comm, int* rank) 

 MPI_Comm, an opaque data type, a communication context.  Default 

context: MPI_COMM_WORLD (all processes)  

 MPI_Comm_rank An integer ranging from 0 to “(num of procs)-1” 


