Programming Distributed
Memory Systems with MPI

Tim Mattson
Intel Labs.

With content from Kathy Yelick, Jim Demmel, Kurt Keutzer (CS194) and others
in the UCB EECS community. www.cs.berkeley.edu/~yelick/cs194107,

http://www.cs.berkeley.edu/~yelick/cs194f07

Outline

—> ® Distributed memory systems: the evolution of HPC hardware
® Programming distributed memory systems with MPI
= MPI introduction and core elements
» Message passing details
= Collective operations
® Closing comments

raCkKing supercomputers.

" Top500: a list of the 500 fastest computers in the world (www.top500.0rg)
® Computers ranked by solution to the MPLinpack benchmark:

® Solve Ax=b problem for any order of A
® List released twice per year: in June and November

Current number 1 (June 2013) 33.9 PFLOPS
Tianhe-2, NUDT, Intel lvy Bridge + Xeon Phi
16.3 PFLOPS, >1.5 million cores

223 _=lf_|g:.-£e,--"'__

1 Eflop/s
Y
100 Pflopss - > L —
o ®* ® v o 8

- e B 33.9 piicp

10 Pflopss 1 PFL P o *

s & * &
slin P &9
i
1 Pflopss s ®) > _—
s ® L o
s ® ! .
100 Tflop/s e @ L N=1
«c ® * s & 5 & 8 @ :
8
— L]
TR .« ° 1 TFLOP
e @ e ® @
1 Tiopds 1.17 Thop/s ®
e o ® o o ®
100 Gflopss L
59.7 Gflop/s
10 Gflopss
1 Gflopss
1993 1994 1295 1996 1997 19498 1995 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 200 201 20§12 2013 2014

Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf

1 ® The CRAY-1A:
= 2.5-nanosecond clock,
* 64 vector registers,

= 1 million 64-bit words of high-
speed memory.

» Peak speed:
* 80 MFLOPS scalar.

» 250 MFLOPS vector (but
this was VERY hard to
achieve)

® Cray software ... by 1978
» Cray Operating System

(COS),
® On July 11,1977, the CRAY-1A, serial : :
number 3, was delivered to NCAR. The " the first automatically
system cost was $8.86 million ($7.9 vectorizing Fortran compiler
million plus $1 million for the disks). (CFT),
http://www.cisl.ucar.edu/computers/gallery/cray/cray1.jsp " Cray Assembler Language

(CAL) were introduced. g

Peak GFLOPS

60

50

40

30

207

101

Large mainframes that operated on vectors of data
Custom built, highly specialized hardware and software
Multiple processors in an shared memory configuration
Required modest changes to software (vectorization)

>
(o)] ({e)
2 ° | 3
e = & | =
-~ © =
2 © A N
— n_ o
< « o
— = o P
N > o Per)
> > > L
® ® ® >
| &8 | . | S8 © .
(&) O (&) - i
) The Cray C916/512 at the Pittsburgh
Vector Supercomputer Center

The Caltech Cosmic
Cube developed by
Charles Seitz and
Geoffrey Fox in1981

64 Intel 8086/8087
processors

128kB of memory per
processor

6-dimensional hypercube
network

The cosmic cube, Charles Seitz “
Communications of the ACM, Vol 28, number 1 January Laun_Ched the a”ttaCk Of
1985, p. 22 the killer micros

Eugene Brooks, SC'90
http://calteches.library.caltech.edu/3419/1/Cubism.pdf

http://calteches.library.caltech.edu/3419/1/Cubism.pdf

Peak GFLOPS

Parallel computers with large numbers of microprocessors
High speed, low latency, scalable interconnection networks
Lots of custom hardware to support scalability

Required massive changes to software (parallelization)

2007
180
160
140
120
100
80
60
40
201

0_

Vector

iPSC\860(128) 1990.
TMC CM5-(1021 1992

Paragon XPS 1993

MPP

Paragon XPS-140 at Sandia
National labs in Albuquerque
NM

\\The cost advantage of mass market COTS

® MPPs using Mass market Commercial off the shelf (COTS)
microprocessors and standard memory and I/O components

® Decreased hardware and software costs makes huge systems
affordable

2000,
» 18001
& 1600
. 1400;
O 1200
§ 1000
o 800

6001

4001

2001

IBM SP/572 (460)
Intel TELOP, (4536

ASCI Red TFLOP Supercomputer

Vector MPP MM-COTS MPP

10

then clusters took over

® A cluster is a collection of connected, independent computers that work

In unison to solve a problem.
Nothing is custom ... motivated users could build cluster on their own

First clusters appeared in
the late 80’s (Stacks of
“SPARC pizza boxes”)

The Intel Pentium Pro in
1995 coupled with Linux
made them competitive.

® NASA Goddard’s Beowulf

cluster demonstrated
publically that high visibility
science could be done on
clusters.

Clusters made it easier to

bring the benefits due to

Moores’s law into working

supercomputers

80%

*
Constellations
60%

MPP

40%

20%

'93 ‘o4 '95 ‘96 '97 ‘98 ‘99 ‘00 '01 ‘02 ‘03 'O4 ‘05 ‘06 '07 ‘08 ‘09 10 11 12 ‘13
Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf
*Constellation: A cluster for which the number of processors on a node is greater than the number of
nodes in the cluster. I've never seen anyone use this term outside of the top500 list. 12

Outline

® Distributed memory systems: the evolution of HPC hardware
® Programming distributed memory systems with MPI
—> = MPI introduction and core elements
» Message passing details
= Collective operations
® Closing comments

14

MPI (1992-today)

® The message passing interface (MPI) is a standard library
® MPI Forum first met April 1992,

= MPI 1.0 in June 1994

= MPI 2.0 in July 1997

= MPI 3.0 in September 2012
Hardware-portable, multi-language communication library
® Enabled billions of dollars of applications
® Work on MPI1 3.1 and 4.0 is in progress.

MPI Forum, March 2008, Chicago

#include <stdio.h>

#include <mpi.h>

int main (int argc, char **argv){
int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm _size (MPI_COMM_WORLD, &size);
printf("Hello from process %d of %d\n",

rank, size);

MPI_Finalize();
return 9;

16

Initializing and finalizing MPI

#include <stdio.h>
#include <mpi.h>

int main (int argc, char **argv){

int rank, size;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf("Hello from process %d of %d\n",

MPI_Finalize();

int MPI Init (int* argc, char* argv[])
= |nitializes the MPI library ... called before any
other MPI functions.

= agrc and argv are the command line args passed
from main()

rank, size);

return Ogvg\\\\\

int MPI Finalize (void)

® Frees memory allocated by the MPI library ... close
every MPI program with a call to MPI_Finalize

17

J \ How many processes are involve

int MPI Comm size (MPI Comm comm, int* size)
= MPI_ Comm, an opaque data type, a communication context. Default

context: MPI_COMM_WORLD (all processes)

= MPI Comm_size returns the number of processes in the process
#incl group associated with the communicator

#include <mpi.h>

int rank, size;
MPI Init (&argc, &argv);

MPI_Finalize();
return O;

int main (int argc, char **argv){

MPI_Comm_rank (MPI_COMM_WORLD, &rank):;
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf("Hello from process %d of %d\n",

rank, size);

Communicators consist of
two parts, a context and a
process group.

The communicator lets me
control how groups of
messages interact.

The communicator lets me
write modular SW ... i.e. |
can give a library module its
own communicator and
know that it's messages
can'’t collide with messages
originating from outside the
module

18

ICN Process am

int MPI Comm rank (MPI Comm comm, int* rank)

= MPI_ Comm, an opaque data type, a communication context. Default
context: MPI_COMM_WORLD (all processes)

= MPI Comm rank An integer ranging from O to “(num of procs)-1~

#incl .

#include <mpi.h> /

int main (int argc, char **argv){

int rank, size; Note that other than init()
MPI_Init (&argc, &argv); and finalize(), every MPI

MPI_Comm_rank (MPI_COMM_WORLD, &rank); function has a
MPI_Comm_size (MPI_COMM_WORLD, &size);

printf("Hello from process %d of %d\n", This makes sense .. You
need a context and group of

processes that the MPI
MPI Finalize(); functions impact ... and
return 0; those come from the
communicator.

rank, size);

19

Running the program

® On a4 node cluster with
MPIch2, I'd run this program
(hello) as:

> mpicc hello.c —o hello
> mpiexec —n 4 —f hostf hello

#include <stdio.h>
#include <mpi.h>

int main (int argc, char **argv){

int rank, size;
MPI Init (&argc, &argv);

Hello from process 1 of 4
Hello from process 2 of 4
Hello from process 0 of 4
Hello from process 3 of 4

® Where “hostf” is a file with the

MPI_Comm_rank (MPI_COMM_WORLD, &rank names of the cluster nodes,
MPI_Comm_size (MPI_COMM_WORLD, &size one to a line.

printf("Hello from process %d of %d\m

MPI_Finalize();
return O;

rank, size);

20

| \\\ Sendin g and Receivin g Data

int MPI Send (void* buf, int
MPI Datatype datatype,
int tag, MPI Comm comm)

int MPI Recv (void* buf, int
MPI Datatype datatype,
int tag, MPI Comm comm,
MPI Status* status)

count,
int dest,

count,
int source,

" MPI_Send performs a blocking send of the specified data (“count”

copies of type “datatype,” stored in “buf”’) to the specified destination
(rank “dest” within communicator “comm?), with message ID “tag”

" MPI_ Recv performs a blocking receive of specified data from specified

source whose parameters match the send; information about transfer is
stored in “status”

By “blocking” we mean the functions return as soon as the buffer, “buf”’, can be

safely used.

21

® The data in a message to send or receive is described by a triple:
= (address, count, datatype)
® An MPI datatype is recursively defined as:
» Predefined, simple data type from the language (e.g., MPI_DOUBLE)
= Complex data types (contiguous blocks or even custom types).
® E.g. ... Aparticle’s state is defined by its 3 coordinates and 3 velocities
MPI_Datatype PART;
MPI_Type_ contiguous(6, MPlI_DOUBLE, &PART);
MPI_Type_commit(&PART);
® You can use this data type in MPI functions, for example, to send data for a
single particle:
MPI_Send (buff 1, PART, Dest, tag, MPI_COMM_WORLD);
/ N

address Datatype

count

22

® The receiving process identifies messages with the double :
= (source, tag)
® Where:

= Source is the rank of the sending process

» Tag is a user-defined integer to help the receiver keep track of different
messages from a single source

MPI_Recv (buff, 1, PART, Src, tag, MPI_COMM_WORLD, &status);

Source/ \tag

® Can relax tag checking by specifying MPl_ANY_TAG as the tag in a receive.
® Can relax source checking by specifying MPl_ANY_SOURCE
MPI_Recv (buff, 1, PART, MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD, &status);

" This is a useful way to insert race conditions into an MPI program
23

ow do people use

A sequential program
working on a data set

The SPMD Design Pattern

Replicate the program.
Add glue code
Break up the data

*A single program working on a
decomposed data set.

*Use Node ID and numb of nodes to
split up work between processes

* Coordination by passing messages.

imple MPI Program

#include “mpi.h”
#include <stdio.h>
int main(int argc, char *argv|[])
{ int rank, buf;
MPI Status status;
MPI Init (&argv, é&argc);
MPI Comm rank(MPI COMM WORLD, &rank);
/* Process 0 sends and Process 1 receives */
if (rank == 0) {
buf = 123456;
MPI Send(&buf, 1, MPI_INT, 1, 0, MPI_COMM WORLD) ;
}
else i1if (rank == 1) {
MPI_ReCV(&buf, 1, MPI INT, o, O, MPI_COMM_WORLD ,
&status) ;
printf(“Received %d\n”’, buf);
}
MPI Finalize();
return 0O;

Slide source: Bill Gropp, ANL 25

Outline

® Distributed memory systems: the evolution of HPC hardware
® Programming distributed memory systems with MPI
= MPI introduction and core elements
m— Message passing details
= Collective operations
® Closing comments

26

Buffers

® Message passing has a small set of primitives, but there are subtleties
= Buffering and deadlock
= Deterministic execution
= Performance

®" When you send data, where does it go? One possibility is:
Process O Process 1

User data

User data

8/20/2013 Derived from: Bill Gropp, UIUC 27

(Receive before Send)

send side

MPI_Send: T1

MPI_Send returns T2 ~ -~

/ ~

Local
buffer can
be reused

v

time

It is important to post the receive before
sending, for highest performance.

receive side

time

— T0: MPI_Recv

\

Once receive

is called @ TO,

Local buffer unavailable
to user

— T3: Transfer Complete
— T4: MPI_Recyv returns

Local buffer filled and
available to user

28

7 A/ .
7/ -

~J 4 Sources of Deadlocks

® Send a large message from process 0 to process 1

» |f there is insufficient storage at the destination, the send
must wait for the user to provide the memory space (through
a receive)

® What happens with this code?

Process 0 Process 1
Send (1) Send (0)
Recv (1) Recv (0)

e This code could deadlock ... it depends on the
availability of system buffers in which to store the data
sent until it can be received

Slide source: based on slides from Bill Gropp, UIUC 29

pY b ' :\«
4 R

}} \\\:Some Solutions to the “deadlock” Problem

® Order the operations more carefully:

Process 0 Process 1
Send (1) Recv (0)
Recv (1) Send (0)

e Supply receive buffer at same time as send:

Process O Process 1

Sendrecv (1) Sendrecv (0)

8/20/2013 Slide source: Bill Gropp, UIUC 30

\\\More Solutions to the “unsafe” Problem

" Supply a sufficiently large buffer in the send function

Process 0 Process 1
Bsend (1) Bsend (0)
Recv (1) Recv (0)

e Use non-blocking operations:

Process 0 Process 1
Isend (1) Isend (0)
Irecv(1l) Irecv (0)
Waitall Waitall

8/20/2013 Slide source: Bill Gropp, UIUC

31

® Non-blocking operations return immediately and pass “request handles”
that can be waited on and queried

 MPIL_ISEND(start, count, datatype, dest, tag, comm, request)
 MPI_IRECV(start, count, datatype, src, tag, comm, request)
« MPI_WAIT(request, status)

® One can also test without waiting using MPI_TEST
« MPI_TEST(request, flag, status)

® Anywhere you use MPI_Send or MPI_Recv, you can use the pair of
MPI_Isend/MPI_Wait or MPI_Irecv/MPI Walt

Non-blocking operations are extremely important ... they
allow you to overlap computation and communication.

Y4

send side receive side

— T0: MPI_Irecv
MPI Isend T2 — — T1: MPI Irecv Returns

MPI_Isend returns T3 — \ buffer unavailable
to user
buffer unavailable / N

— T4: MPI_Wait called

to user \
Sender completes TS5 — N\
N\
MPI_Wait T6 — \
MPI_Wait returns T9 — *— T7: transfer finishes
— T8: MPI_Wait returns
buffer available .
to user v v \ receive buffer
time time filled and available

to the user
33

(part 1 of 2)

#include <stdio.h>
#include <mpi.h>

int main(int argc, char **argv)

{
int num, rank, size, tag, next, from;
MPI_Status status1, status2;
MPI_Request req1, reqg2;

MPI1_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

tag = 201;

next = (rank+1) % size;

from = (rank + size - 1) % size;

if (rank == 0) {
printf("Enter the number of times around the ring: ");
scanf("%d", &num);

printf("Process %d sending %d to %d\n", rank, num, next);
MPI_Isend(&num, 1, MPIl_INT, next, tag, MPI_COMM_WORLD,&req1);
MPI_Wait(&req1, &status1);

) 34

}

do {
MPI_Irecv(&num, 1, MPIl_INT, from, tag, MPI_COMM_WORLD, &req2);
MPI_Wait(&reqg2, &status2);
printf("Process %d received %d from process %d\n", rank, num, from);

if (rank == 0) {

num--;

printf("Process 0 decremented number\n");
}

printf("Process %d sending %d to %d\n", rank, num, next);
MPI_Isend(&num, 1, MPIl_INT, next, tag, MPI_COMM_WORLD, &req1);
MPI_Wait(&req1, &status1);

} while (num != 0);

if (rank == 0) {
MPI_Irecv(&num, 1, MPI_INT, from, tag, MPI_COMM_WORLD, &req2);
MPI_Wait(&reqg2, &status2);

}

MPI1_Finalize();
return O;

35

Outline

® Distributed memory systems: the evolution of HPC hardware
® Programming distributed memory systems with MPI
= MPI introduction and core elements
» Message passing details
> = Collective operations
® Closing comments

36

Reduction

int MPI Reduce
vold* recvbuf,

(void* sendbuf,
int count,

MPI Datatype datatype, MPI Op op,
int root, MPI Comm comm)

®* MPI_Reduce performs specified reduction operation on specified data

from all processes in communicator, places result in process “root” only.

®* MPI_Allreduce places result in all processes (avoid unless necessary)

Operation Function Operation Function

MPI SUM Summation MPI BAND Bitwise AND

MPI PROD Product MPI LOR Logical OR
MPI_MIN Minimum value MPI_BOR Bitwise OR
MPI_MINLOC | Minimum value and location MPI LXOR Logical exclusive OR
MPI_MAX Maximum value MPI BXOR Bitwise exclusive OR

MPI MAXLOC

Maximum value and location

MPI LAND

Logical AND

User-defined

It is possible to define new
reduction operations

37

Pi program in MPI

#include <mpi.h>
void main (int argc, char *argv[])

{

int 1, my_1d, numprocs; double x, pi, step, sum = 0.0 ;

step = 1.0/(double) num_steps ;

MPI_Init(&arge, &argyv) ;
MPI_Comm_Rank(MPI_COMM_WORLD, &my id) ;
MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;

for (1I=my _1d; i<num_steps; i1=1+numprocs)

{

x = (1+0.5)*step;

sum += 4.0/(1.0+x*x);
b
sum *= step ;

MPI_Reduce(&sum, &pi, 1, MPI DOUBLE, MPI _SUM, 0,
MPI_COMM_WORLD)

38

#include <mpi.h=
void main (int argc, char *argv]) Thread OpenMP OpenMP MPI
{ orprocs | SPMD Pl Loop
int i my_id. numprocs: double x. pi. step. sum g
step = 1.0/(double) mm_steps : critical
MFI Init(&arge, &argy) ; 1 0.85 0.43 0.84
MPI_ Comm_Rank(MPI COMM WORLD,
MPI Comm_Size(MPI_COMM_WORLD, { 2 0.48 0.23 0.48
for (i=my_id: i<num_steps: : i=i+numprocs) 3 0.47 0.23 0.46
{
x = (i+0.5)*step: 4 0.46 0.23 0.46
sum += 4 .0/(1 0+x*x);
h
sum *= step ; _) . Note: OMP loop used a
} MPI_COMM_WORLD) The others used a cyclic
distribution. Serial .. 0.43.

*Intel compiler (icpc) with —O3 on Apple OS X 10.7.3 with a dual core (four HW thread)

Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 39

® Many MPI applications have few (if any) sends and receives. They
use a design pattern called “Bulk Synchronous Processing’.

Uses the Single Program Multiple Data
pattern

Each process maintains a local view of
the global data

A problem broken down into phases each
composed of two subphases:

« Compute on local view of data

« Communicate to update global view
on all processes (collective
communication).

Continue phases until complete

i

Collective comm.

:

Collective comm.

40

MPI Collective Routines

® Collective communications: called by all processes in the group to
create a global result and share with all participating processes.

= Allgather, Allgatherv, Allreduce, Alltoall,

Alltoallv, Bcast, Gather, Gatherv, Reduce,

Reduce scatter, Scan, Scatter, Scatterv
" Notes:

* Allreduce, Reduce, Reduce scatter, and Scan use the
same set of built-in or user-defined combiner functions.

= Routines with the “A11” prefix deliver results to all participating
processes

= Routines with the “v” suffix allow chunks to have different sizes
® Global synchronization is available in MPI
" MPI Barrier(comm)

® Blocks until all processes in the group of the communicator comm call it.

41

P1
P2
P3

PO
Pl

P2
P3

A BICID
RN
RN
HEEE

Broadcast

Scatter

Gather

Al L
Al L
Al L

Al L
B | |
Cl | |
D | |

42

More Collective Data Movement

PO
Pl

P2
P3

PO
Pl

P2
P3

Al L1
B | |

Cl | |
D | |

AOATIA2IA3
B0/B1/B2B3
coclic2c3
DOD1D2D3

Allgather

Alltoall

»
|

CS267 Lecture 7

[
»

A BICD
A BICD
A BICD
ABICID

A0IBOICOIDO
ALBIIC1DI
A2B2/C2ID2
A31B3/C3D3

43

43

Collective Computation

PO

Pl E Reduce
P2

I D

PO

P1 E

Py Scan

P3 m

CS267 Lecture 7 44

44

Outline

® Distributed memory systems: the evolution of HPC hardware
® Programming distributed memory systems with MPI
= MPI introduction and core elements
» Message passing details
= Collective operations
== Closing comments

45

topics we

®" Topologies: map a communicator onto, say, a 3D Cartesian
processor grid

* |Implementation can provide ideal logical to physical mapping

® Rich set of I/0 functions: individual, collective, blocking and non-
blocking

= Collective I/O can lead to many small requests being merged
for more efficient 1/0

® One-sided communication: puts and gets with various
synchronization schemes

* |[mplementations not well-optimized and rarely used
» Redesign of interface is underway

® Task creation and destruction: change number of tasks during a
run

* Few implementations available

46

\ MPl'isn’t as hard as many belive ...

® There are over 330 functions in the MPI spec, but most programs
only use a small subset:

» Point-to-point communication
 MPIL _Irecv, MPI_Isend, MPI_Wait, MPI_Send, MPI_Recv
= Startup
« MPIL_Init, MPl_Finalize
» |[nformation on the processes
 MPl_Comm_rank, MPI_Comm_size,
= Collective communication
 MPI_Alireduce, MPI_Bcast, MPI_Allgather

47

than multithreading?

Extra work upfront, but easier
optimization and debugging means
overall, less time to solution

H0J}4

Message passing

Time

But difficult debugging and
optimization means overall
project takes longer

initial parallelization can be
quite easy

aBelTe

Multi-threading

Time

Proving that a shared address space program using
semaphores is race free is an NP-complete problem*

*P. N. Klein, H. Lu, and R. H. B. Netzer, Detecting Race Conditions in Parallel Programs that Use Semaphores, Algorithmica, vol. 35 pp. 321-345, 200348

MPI References

® The Standard itself:

= at http://www.mpi-forum.org

= All MPI official releases, in both postscript and
HTML

® Other information on Web:
= at http://www.mcs.anl.gov/mpi

» pointers to lots of stuff, including other talks and
tutorials, a FAQ, other MPI pages

CS267 Lecture 7 Slide source: Biﬂ%ropp, ANL
49

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/mpi

Using MPI: Portable Parallel Programming

with the Message-Passing Interface (2" edition),
by Gropp, Lusk, and Skjellum, MIT Press,

1999.

Using MPI-2: Portable Parallel Programming
with the Message-Passing Interface, by Gropp,
Lusk, and Thakur, MIT Press, 1999.

MPI: The Complete Reference - Vol 1 The MPI Core, by
Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT
Press, 1998.

MPI: The Complete Reference - Vol 2 The MPI
Extensions, by Gropp, Huss-Lederman, Lumsdaine, Lusk,
Nitzberg, Saphir, and Snir, MIT Press, 1998.

Designing and Building Parallel Programs, by lan Foster,
Addison-Wesley, 1995.

Parallel Programming with MPI, by Peter Pacheco,
Morgan-Kaufmann, 1997.

Slide source: Bill Gropp, ANL 50

®" The key constructs of MPI
= MPI_Init() and MPI_Finalize()
= MPI_Comm_rize() and MPI_Comm_rank()
= MPI_Send() and MPI_Recv()
= MPI_lIsend(), MPI _Irecv(), and MPIl_Wait()
= MPI_Bcast(), MPIl_Reduce(), MPI_Gather(), and MPI_Scatter()
= MPI_Barrier()

To do: | need a page for each one of these
similar to the one | have now for MPI|_send
and MP|_Recv

51

Blocking Send and Receive

int MPI Send (void* buf, int count,
MPI Datatype datatype, int dest,
int tag, MPI Comm comm)

int MPI Recv (void* buf, int count,
MPI Datatype datatype, 1int source,
int tag, MPI Comm comm,
MPI Status* status)

" MPI_Send performs a blocking send of the specified data (“count”

copies of type “datatype,” stored in “buf”’) to the specified destination
(rank “dest” within communicator “comm?), with message ID “tag”

" MPI_ Recv performs a blocking receive of specified data from specified

source whose parameters match the send; information about transfer is
stored in “status”

By “blocking” we mean the functions return as soon as the buffer, “buf”’, can be

safely used.

52

® Non-blocking operations return immediately and pass “request handles”
that can be waited on and queried

 MPIL_ISEND(start, count, datatype, dest, tag, comm, request)
 MPI_IRECV(start, count, datatype, src, tag, comm, request)
« MPI_WAIT(request, status)

® One can also test without waiting using MPI_TEST
« MPI_TEST(request, flag, status)

® Anywhere you use MPI_Send or MPI_Recv, you can use the pair of
MPI_Isend/MPI_Wait or MPI_Irecv/MPI Walt

Non-blocking operations are extremely important ... they
allow you to overlap computation and communication.

53

Launching and closing MPI

®" These functions “bracket” every MPI program

int MPI Init (int* argc, char* argv[])
= |nitializes the MPI library ... called before any
other MPI functions.

= agrc and argv are the command line args passed
from main()

int MPI Finalize (void)

®" Frees memory allocated by the MPI library ... close
every MPI| program with a call to MPI_Finalize

54

e process group

® SPMD pattern: use the ID of each process and the size of the

process group to choose the data manipulated or the branching
through the program

int MPI Comm size (MPI Comm comm, int* size)
= MPI Comm, an opaque data type, a communication context. Default
context: MPI_COMM_WORLD (all processes)

= MPI Comm_ size returns the number of processes in the process
group associated with the communicator

int MPI Comm rank (MPI Comm comm, int* rank)

= MPI_ Comm, an opaque data type, a communication context. Default
context: MPI_COMM_WORLD (all processes)

= MPI Comm rank An integer ranging from O to “(num of procs)-1”

95

