
1 1

Programming Distributed
Memory Systems with MPI

Tim Mattson

Intel Labs.

With content from Kathy Yelick, Jim Demmel, Kurt Keutzer (CS194) and others

in the UCB EECS community. www.cs.berkeley.edu/~yelick/cs194f07,

http://www.cs.berkeley.edu/~yelick/cs194f07

2

Outline

 Distributed memory systems: the evolution of HPC hardware

 Programming distributed memory systems with MPI

 MPI introduction and core elements

 Message passing details

 Collective operations

 Closing comments

4

Tracking Supercomputers: Top500

 Top500: a list of the 500 fastest computers in the world (www.top500.org)

 Computers ranked by solution to the MPLinpack benchmark:

 Solve Ax=b problem for any order of A

 List released twice per year: in June and November

Current number 1 (June 2013) 33.9 PFLOPS

Tianhe-2, NUDT, Intel Ivy Bridge + Xeon Phi

16.3 PFLOPS, >1.5 million cores

1 PFLOP

1 TFLOP

Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf

6

The birth of Supercomputing

 The CRAY-1A:

 2.5-nanosecond clock,

 64 vector registers,

 1 million 64-bit words of high-

speed memory.

 Peak speed:

• 80 MFLOPS scalar.

• 250 MFLOPS vector (but

this was VERY hard to

achieve)

 Cray software … by 1978

 Cray Operating System

(COS),

 the first automatically

vectorizing Fortran compiler

(CFT),

 Cray Assembler Language

(CAL) were introduced.

 On July 11, 1977, the CRAY-1A, serial

number 3, was delivered to NCAR. The

system cost was $8.86 million ($7.9

million plus $1 million for the disks).

http://www.cisl.ucar.edu/computers/gallery/cray/cray1.jsp

7

0

10

20

30

40

50

60

Vector

History of Supercomputing:

The Era of the Vector Supercomputer Large mainframes that operated on vectors of data

 Custom built, highly specialized hardware and software

 Multiple processors in an shared memory configuration

 Required modest changes to software (vectorization)

The Cray C916/512 at the Pittsburgh

Supercomputer Center

C
ra

y
 2

 (
4
),

 1
9
8
5

C
ra

y
 Y

M
P

 (
8
),

 1
9
8
9

C
ra

y
 T

9
3
2
 (

3
2
),

 1
9
9
6

P
e
a
k

 G
F

L
O

P
S

C
ra

y
 C

9
1
6
 (

1
6
),

 1
9
9
1

Vector

8

The attack of the killer micros

 The Caltech Cosmic

Cube developed by

Charles Seitz and

Geoffrey Fox in1981

 64 Intel 8086/8087

processors

 128kB of memory per

processor

 6-dimensional hypercube

network

http://calteches.library.caltech.edu/3419/1/Cubism.pdf

The cosmic cube, Charles Seitz

Communications of the ACM, Vol 28, number 1 January

1985, p. 22

Launched the “attack of

the killer micros”
Eugene Brooks, SC’90

http://calteches.library.caltech.edu/3419/1/Cubism.pdf

9

0

20

40

60

80

100

120

140

160

180

200

Vector MPP

It took a while, but MPPs came to

dominate supercomputing

 Parallel computers with large numbers of microprocessors

 High speed, low latency, scalable interconnection networks

 Lots of custom hardware to support scalability

 Required massive changes to software (parallelization)

Paragon XPS-140 at Sandia

National labs in Albuquerque

NM

P
e
a
k

 G
F

L
O

P
S

iP
S

C
\8

6
0
(1

2
8
)

1
9
9
0
.

P
a
ra

g
o

n
 X

P
S

 1
9
9
3

T
M

C
 C

M
5

-(
1
0
2
4
)

1
9
9
2

Vector MPP

10

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Vector MPP CCOTS MPP

IB
M

 S
P

/5
7
2
 (

4
6
0
)

In
te

l
T

F
L

O
P
,

 (
4
5

3
6

)

The cost advantage of mass market COTS

 MPPs using Mass market Commercial off the shelf (COTS)

microprocessors and standard memory and I/O components

 Decreased hardware and software costs makes huge systems

affordable

P
e
a
k
 G

F
L
O

P
S

ASCI Red TFLOP Supercomputer

Vector MPP MM-COTS MPP

11

The MPP future looked bright … but

then clusters took over

 A cluster is a collection of connected, independent computers that work

in unison to solve a problem.

 Nothing is custom … motivated users could build cluster on their own

 First clusters appeared in

the late 80’s (Stacks of

“SPARC pizza boxes”)

 The Intel Pentium Pro in

1995 coupled with Linux

made them competitive.

 NASA Goddard’s Beowulf

cluster demonstrated

publically that high visibility

science could be done on

clusters.

 Clusters made it easier to

bring the benefits due to

Moores’s law into working

supercomputers

12

Top 500 list: System Architecture

*Constellation: A cluster for which the number of processors on a node is greater than the number of

nodes in the cluster. I’ve never seen anyone use this term outside of the top500 list.

*

Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf

14

Outline

 Distributed memory systems: the evolution of HPC hardware

 Programming distributed memory systems with MPI

 MPI introduction and core elements

 Message passing details

 Collective operations

 Closing comments

15

MPI (1992-today)

 The message passing interface (MPI) is a standard library

 MPI Forum first met April 1992,

 MPI 1.0 in June 1994

 MPI 2.0 in July 1997

 MPI 3.0 in September 2012

 Hardware-portable, multi-language communication library

 Enabled billions of dollars of applications

 Work on MPI 3.1 and 4.0 is in progress.

MPI Forum, March 2008, Chicago

15

16

MPI Hello World

#include <stdio.h>

#include <mpi.h>

int main (int argc, char **argv){

 int rank, size;

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 printf("Hello from process %d of %d\n",

 rank, size);

 MPI_Finalize();

 return 0;

}

17

Initializing and finalizing MPI

#include <stdio.h>

#include <mpi.h>

int main (int argc, char **argv){

 int rank, size;

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 printf("Hello from process %d of %d\n",

 rank, size);

 MPI_Finalize();

 return 0;

}

int MPI_Init (int* argc, char* argv[])

 Initializes the MPI library … called before any

other MPI functions.

 agrc and argv are the command line args passed

from main()

int MPI_Finalize (void)

 Frees memory allocated by the MPI library … close
every MPI program with a call to MPI_Finalize

18

How many processes are involved?

#include <stdio.h>

#include <mpi.h>

int main (int argc, char **argv){

 int rank, size;

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 printf("Hello from process %d of %d\n",

 rank, size);

 MPI_Finalize();

 return 0;

}

int MPI_Comm_size (MPI_Comm comm, int* size)

 MPI_Comm, an opaque data type, a communication context. Default

context: MPI_COMM_WORLD (all processes)

 MPI_Comm_size returns the number of processes in the process

group associated with the communicator

Communicators consist of

two parts, a context and a

process group.

The communicator lets me

control how groups of

messages interact.

The communicator lets me

write modular SW … i.e. I

can give a library module its

own communicator and

know that it’s messages

can’t collide with messages

originating from outside the

module

19

Which process “am I” (the rank)

#include <stdio.h>

#include <mpi.h>

int main (int argc, char **argv){

 int rank, size;

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 printf("Hello from process %d of %d\n",

 rank, size);

 MPI_Finalize();

 return 0;

}

int MPI_Comm_rank (MPI_Comm comm, int* rank)

 MPI_Comm, an opaque data type, a communication context. Default

context: MPI_COMM_WORLD (all processes)

 MPI_Comm_rank An integer ranging from 0 to “(num of procs)-1”

Note that other than init()

and finalize(), every MPI

function has a

communicator.

This makes sense .. You

need a context and group of

processes that the MPI

functions impact … and

those come from the

communicator.

20

Running the program

#include <stdio.h>

#include <mpi.h>

int main (int argc, char **argv){

 int rank, size;

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 printf("Hello from process %d of %d\n",

 rank, size);

 MPI_Finalize();

 return 0;

}

 On a 4 node cluster with

MPIch2, I’d run this program

(hello) as:

 > mpicc hello.c –o hello

> mpiexec –n 4 –f hostf hello

Hello from process 1 of 4

Hello from process 2 of 4

Hello from process 0 of 4

Hello from process 3 of 4

• Where “hostf” is a file with the

names of the cluster nodes,

one to a line.

21

Sending and Receiving Data

 MPI_Send performs a blocking send of the specified data (“count”

copies of type “datatype,” stored in “buf”) to the specified destination

(rank “dest” within communicator “comm”), with message ID “tag”

int MPI_Send (void* buf, int count,

 MPI_Datatype datatype, int dest,

 int tag, MPI_Comm comm)

int MPI_Recv (void* buf, int count,

 MPI_Datatype datatype, int source,

 int tag, MPI_Comm comm,

 MPI_Status* status)

 MPI_Recv performs a blocking receive of specified data from specified

source whose parameters match the send; information about transfer is

stored in “status”

By “blocking” we mean the functions return as soon as the buffer, “buf”, can be

safely used.

22

The data in a message: datatypes

 The data in a message to send or receive is described by a triple:

 (address, count, datatype)

 An MPI datatype is recursively defined as:

 Predefined, simple data type from the language (e.g., MPI_DOUBLE)

 Complex data types (contiguous blocks or even custom types).

 E.g. … A particle’s state is defined by its 3 coordinates and 3 velocities

MPI_Datatype PART;

MPI_Type_contiguous(6, MPI_DOUBLE, &PART);

MPI_Type_commit(&PART);

 You can use this data type in MPI functions, for example, to send data for a

single particle:

 MPI_Send (buff, 1, PART, Dest, tag, MPI_COMM_WORLD);

address
count

Datatype

23

Receiving the right message

 The receiving process identifies messages with the double :

 (source, tag)

 Where:

 Source is the rank of the sending process

 Tag is a user-defined integer to help the receiver keep track of different

messages from a single source

 MPI_Recv (buff, 1, PART, Src, tag, MPI_COMM_WORLD, &status);

Source tag

 Can relax tag checking by specifying MPI_ANY_TAG as the tag in a receive.

 Can relax source checking by specifying MPI_ANY_SOURCE

 MPI_Recv (buff, 1, PART, MPI_ANY_SOURCE, MPI_ANY_TAG,

 MPI_COMM_WORLD, &status);

 This is a useful way to insert race conditions into an MPI program

24

How do people use MPI?

The SPMD Design Pattern

Replicate the program.

Add glue code

Break up the data

A sequential program

working on a data set

•A single program working on a

decomposed data set.

•Use Node ID and numb of nodes to

split up work between processes

• Coordination by passing messages.

25

A Simple MPI Program

#include “mpi.h”
#include <stdio.h>

int main(int argc, char *argv[])

{ int rank, buf;

 MPI_Status status;

 MPI_Init(&argv, &argc);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 /* Process 0 sends and Process 1 receives */

 if (rank == 0) {

 buf = 123456;

 MPI_Send(&buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

 }

 else if (rank == 1) {

 MPI_Recv(&buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,

 &status);

 printf(“Received %d\n”, buf);
 }

 MPI_Finalize();

 return 0;

}

Slide source: Bill Gropp, ANL

26

Outline

 Distributed memory systems: the evolution of HPC hardware

 Programming distributed memory systems with MPI

 MPI introduction and core elements

 Message passing details

 Collective operations

 Closing comments

27

Buffers

 Message passing has a small set of primitives, but there are subtleties

 Buffering and deadlock

 Deterministic execution

 Performance

 When you send data, where does it go? One possibility is:

Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

8/20/2013 Derived from: Bill Gropp, UIUC

28

Blocking Send-Receive Timing Diagram
(Receive before Send)

send side receive side

MPI_Send: T1

T4: MPI_Recv returns

MPI_Send returns T2

Once receive

is called @ T0,

Local buffer unavailable

to user

Local buffer filled and

available to user

It is important to post the receive before

sending, for highest performance.

T0: MPI_Recv

Local

buffer can

be reused

T3: Transfer Complete

time time

29

 Send a large message from process 0 to process 1

 If there is insufficient storage at the destination, the send
must wait for the user to provide the memory space (through
a receive)

 What happens with this code?

Sources of Deadlocks

Process 0

Send(1)

Recv(1)

Process 1

Send(0)

Recv(0)

• This code could deadlock … it depends on the
availability of system buffers in which to store the data
sent until it can be received

Slide source: based on slides from Bill Gropp, UIUC

30

Some Solutions to the “deadlock” Problem

 Order the operations more carefully:

• Supply receive buffer at same time as send:

Process 0

Send(1)

Recv(1)

Process 1

Recv(0)

Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)

8/20/2013 Slide source: Bill Gropp, UIUC

31

More Solutions to the “unsafe” Problem

 Supply a sufficiently large buffer in the send function

• Use non-blocking operations:

Process 0

Bsend(1)

Recv(1)

Process 1

Bsend(0)

Recv(0)

Process 0

Isend(1)

Irecv(1)

Waitall

Process 1

Isend(0)

Irecv(0)

Waitall

8/20/2013 Slide source: Bill Gropp, UIUC

32

Non-Blocking Communication

 Non-blocking operations return immediately and pass ‘‘request handles”
that can be waited on and queried

• MPI_ISEND(start, count, datatype, dest, tag, comm, request)

• MPI_IRECV(start, count, datatype, src, tag, comm, request)

• MPI_WAIT(request, status)

 One can also test without waiting using MPI_TEST

• MPI_TEST(request, flag, status)

 Anywhere you use MPI_Send or MPI_Recv, you can use the pair of
MPI_Isend/MPI_Wait or MPI_Irecv/MPI_Wait

Non-blocking operations are extremely important … they

allow you to overlap computation and communication.

33

buffer unavailable

to user

Non-Blocking Send-Receive Diagram

send side receive side

MPI_Isend

T8: MPI_Wait returns

T3 buffer unavailable

to user

receive buffer

filled and available

to the user

T0: MPI_Irecv

T7: transfer finishes

T4: MPI_Wait called

MPI_Wait

T1: MPI_Irecv Returns

T5

time time

T2

MPI_Isend returns

T6

T9

Sender completes

MPI_Wait returns

buffer available

to user

34

Example: shift messages around a ring

(part 1 of 2)

#include <stdio.h>

#include <mpi.h>

int main(int argc, char **argv)

{

 int num, rank, size, tag, next, from;

 MPI_Status status1, status2;

 MPI_Request req1, req2;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 tag = 201;

 next = (rank+1) % size;

 from = (rank + size - 1) % size;

 if (rank == 0) {

 printf("Enter the number of times around the ring: ");

 scanf("%d", &num);

 printf("Process %d sending %d to %d\n", rank, num, next);

 MPI_Isend(&num, 1, MPI_INT, next, tag, MPI_COMM_WORLD,&req1);

 MPI_Wait(&req1, &status1);

 }

35

Example: shift messages around a ring

(part 2 of 2)
 do {

 MPI_Irecv(&num, 1, MPI_INT, from, tag, MPI_COMM_WORLD, &req2);

 MPI_Wait(&req2, &status2);

 printf("Process %d received %d from process %d\n", rank, num, from);

 if (rank == 0) {

 num--;

 printf("Process 0 decremented number\n");

 }

 printf("Process %d sending %d to %d\n", rank, num, next);

 MPI_Isend(&num, 1, MPI_INT, next, tag, MPI_COMM_WORLD, &req1);

 MPI_Wait(&req1, &status1);

 } while (num != 0);

 if (rank == 0) {

 MPI_Irecv(&num, 1, MPI_INT, from, tag, MPI_COMM_WORLD, &req2);

 MPI_Wait(&req2, &status2);

 }

 MPI_Finalize();

 return 0;

}

36

Outline

 Distributed memory systems: the evolution of HPC hardware

 Programming distributed memory systems with MPI

 MPI introduction and core elements

 Message passing details

 Collective operations

 Closing comments

37

Reduction

 int MPI_Reduce (void* sendbuf,

 void* recvbuf, int count,

 MPI_Datatype datatype, MPI_Op op,

 int root, MPI_Comm comm)

• MPI_Reduce performs specified reduction operation on specified data

from all processes in communicator, places result in process “root” only.

• MPI_Allreduce places result in all processes (avoid unless necessary)

Operation Function

MPI_SUM Summation

MPI_PROD Product

MPI_MIN Minimum value

MPI_MINLOC Minimum value and location

MPI_MAX Maximum value

MPI_MAXLOC Maximum value and location

MPI_LAND Logical AND

Operation Function

MPI_BAND Bitwise AND

MPI_LOR Logical OR

MPI_BOR Bitwise OR

MPI_LXOR Logical exclusive OR

MPI_BXOR Bitwise exclusive OR

User-defined It is possible to define new
reduction operations

38

Pi program in MPI

#include <mpi.h>

void main (int argc, char *argv[])

{

 int i, my_id, numprocs; double x, pi, step, sum = 0.0 ;

 step = 1.0/(double) num_steps ;

 MPI_Init(&argc, &argv) ;

 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;

 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;

 for (i=my_id; i<num_steps; i=i+numprocs)

 {

 x = (i+0.5)*step;

 sum += 4.0/(1.0+x*x);

 }

 sum *= step ;

 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

 MPI_COMM_WORLD) ;

}

39

MPI Pi program performance

*Intel compiler (icpc) with –O3 on Apple OS X 10.7.3 with a dual core (four HW thread)

Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

Thread

or procs

OpenMP

SPMD

critical

OpenMP

PI Loop

MPI

1 0.85 0.43 0.84

2 0.48 0.23 0.48

3 0.47 0.23 0.46

4 0.46 0.23 0.46

Note: OMP loop used a

Blocked loop distribution.

The others used a cyclic

distribution. Serial .. 0.43.

40

Bulk Synchronous Processing

 Many MPI applications have few (if any) sends and receives. They

use a design pattern called “Bulk Synchronous Processing”.

 Uses the Single Program Multiple Data

pattern

 Each process maintains a local view of

the global data

 A problem broken down into phases each

composed of two subphases:

• Compute on local view of data

• Communicate to update global view

on all processes (collective

communication).

 Continue phases until complete

Collective comm.

Collective comm.

41

MPI Collective Routines

 Collective communications: called by all processes in the group to

create a global result and share with all participating processes.

 Allgather, Allgatherv, Allreduce, Alltoall,

Alltoallv, Bcast, Gather, Gatherv, Reduce,

Reduce_scatter, Scan, Scatter, Scatterv

 Notes:

 Allreduce, Reduce, Reduce_scatter, and Scan use the
same set of built-in or user-defined combiner functions.

 Routines with the “All” prefix deliver results to all participating
processes

 Routines with the “v” suffix allow chunks to have different sizes

 Global synchronization is available in MPI

 MPI_Barrier(comm)

 Blocks until all processes in the group of the communicator comm call it.

42

Collective Data Movement

A

B

D

C

B C D

A

A

A

A

Broadcast

Scatter

Gather

A

A

P0

P1

P2

P3

P0

P1

P2

P3

43

CS267 Lecture 7 43

More Collective Data Movement

A

B

D

C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D

A B C D

A B C D

A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

44

CS267 Lecture 7 44

Collective Computation

P0

P1

P2

P3

P0

P1

P2

P3

A

B

D

C

A

B

D

C

ABCD

A
AB

ABC

ABCD

Reduce

Scan

45

Outline

 Distributed memory systems: the evolution of HPC hardware

 Programming distributed memory systems with MPI

 MPI introduction and core elements

 Message passing details

 Collective operations

 Closing comments

46

MPI topics we did Not Cover

 Topologies: map a communicator onto, say, a 3D Cartesian

processor grid

 Implementation can provide ideal logical to physical mapping

 Rich set of I/O functions: individual, collective, blocking and non-

blocking

 Collective I/O can lead to many small requests being merged

for more efficient I/O

 One-sided communication: puts and gets with various

synchronization schemes

 Implementations not well-optimized and rarely used

 Redesign of interface is underway

 Task creation and destruction: change number of tasks during a

run

 Few implementations available

47

MPI isn’t as hard as many belive …

 There are over 330 functions in the MPI spec, but most programs

only use a small subset:

 Point-to-point communication

• MPI_Irecv, MPI_Isend, MPI_Wait, MPI_Send, MPI_Recv

 Startup

• MPI_Init, MPI_Finalize

 Information on the processes

• MPI_Comm_rank, MPI_Comm_size,

 Collective communication

• MPI_Allreduce, MPI_Bcast, MPI_Allgather

48

Isn’t message passing much harder
than multithreading?

Time

E
ffo

rt

Extra work upfront, but easier
optimization and debugging means

overall, less time to solution
Message passing

Time

E
ffo

rt

initial parallelization can be
quite easy

Multi-threading

But difficult debugging and
optimization means overall

project takes longer

*P. N. Klein, H. Lu, and R. H. B. Netzer, Detecting Race Conditions in Parallel Programs that Use Semaphores, Algorithmica, vol. 35 pp. 321–345, 2003

Proving that a shared address space program using

semaphores is race free is an NP-complete problem*

49

CS267 Lecture 7
49

MPI References

 The Standard itself:

 at http://www.mpi-forum.org

 All MPI official releases, in both postscript and

HTML

 Other information on Web:

 at http://www.mcs.anl.gov/mpi

 pointers to lots of stuff, including other talks and

tutorials, a FAQ, other MPI pages

Slide source: Bill Gropp, ANL

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/mpi

50

Books on

MPI

 Using MPI: Portable Parallel Programming

with the Message-Passing Interface (2nd edition),

by Gropp, Lusk, and Skjellum, MIT Press,

1999.

 Using MPI-2: Portable Parallel Programming

with the Message-Passing Interface, by Gropp,

Lusk, and Thakur, MIT Press, 1999.

 MPI: The Complete Reference - Vol 1 The MPI Core, by

Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT

Press, 1998.

 MPI: The Complete Reference - Vol 2 The MPI

Extensions, by Gropp, Huss-Lederman, Lumsdaine, Lusk,

Nitzberg, Saphir, and Snir, MIT Press, 1998.

 Designing and Building Parallel Programs, by Ian Foster,

Addison-Wesley, 1995.

 Parallel Programming with MPI, by Peter Pacheco,

Morgan-Kaufmann, 1997.

Slide source: Bill Gropp, ANL

51

Backup

 The key constructs of MPI

 MPI_Init() and MPI_Finalize()

 MPI_Comm_rize() and MPI_Comm_rank()

 MPI_Send() and MPI_Recv()

 MPI_Isend(), MPI_Irecv(), and MPI_Wait()

 MPI_Bcast(), MPI_Reduce(), MPI_Gather(), and MPI_Scatter()

 MPI_Barrier()

To do: I need a page for each one of these

similar to the one I have now for MPI_send

and MPI_Recv

52

Blocking Send and Receive

 MPI_Send performs a blocking send of the specified data (“count”

copies of type “datatype,” stored in “buf”) to the specified destination

(rank “dest” within communicator “comm”), with message ID “tag”

int MPI_Send (void* buf, int count,

 MPI_Datatype datatype, int dest,

 int tag, MPI_Comm comm)

int MPI_Recv (void* buf, int count,

 MPI_Datatype datatype, int source,

 int tag, MPI_Comm comm,

 MPI_Status* status)

 MPI_Recv performs a blocking receive of specified data from specified

source whose parameters match the send; information about transfer is

stored in “status”

By “blocking” we mean the functions return as soon as the buffer, “buf”, can be

safely used.

53

Non-Blocking Comminication

 Non-blocking operations return immediately and pass ‘‘request handles”
that can be waited on and queried

• MPI_ISEND(start, count, datatype, dest, tag, comm, request)

• MPI_IRECV(start, count, datatype, src, tag, comm, request)

• MPI_WAIT(request, status)

 One can also test without waiting using MPI_TEST

• MPI_TEST(request, flag, status)

 Anywhere you use MPI_Send or MPI_Recv, you can use the pair of
MPI_Isend/MPI_Wait or MPI_Irecv/MPI_Wait

Non-blocking operations are extremely important … they

allow you to overlap computation and communication.

54

Launching and closing MPI

 These functions “bracket” every MPI program

int MPI_Init (int* argc, char* argv[])

 Initializes the MPI library … called before any

other MPI functions.

 agrc and argv are the command line args passed

from main()

int MPI_Finalize (void)

 Frees memory allocated by the MPI library … close
every MPI program with a call to MPI_Finalize

55

Understanding the process group

 SPMD pattern: use the ID of each process and the size of the

process group to choose the data manipulated or the branching

through the program

int MPI_Comm_size (MPI_Comm comm, int* size)

 MPI_Comm, an opaque data type, a communication context. Default

context: MPI_COMM_WORLD (all processes)

 MPI_Comm_size returns the number of processes in the process

group associated with the communicator

int MPI_Comm_rank (MPI_Comm comm, int* rank)

 MPI_Comm, an opaque data type, a communication context. Default

context: MPI_COMM_WORLD (all processes)

 MPI_Comm_rank An integer ranging from 0 to “(num of procs)-1”

