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Programming Distributed 
Memory Systems with MPI  

Tim Mattson 

Intel Labs. 

 

With content from Kathy Yelick, Jim Demmel, Kurt Keutzer (CS194) and others 

in the UCB EECS community.     www.cs.berkeley.edu/~yelick/cs194f07,  

http://www.cs.berkeley.edu/~yelick/cs194f07
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Tracking Supercomputers: Top500 

 Top500: a list of the 500 fastest computers in the world (www.top500.org) 

 Computers ranked by solution to the MPLinpack benchmark: 

 Solve Ax=b problem  for any order of A 

 List released twice per year: in June and November 

Current number 1 (June 2013)  33.9 PFLOPS 

Tianhe-2, NUDT, Intel Ivy Bridge + Xeon Phi 

16.3 PFLOPS, >1.5 million cores 

1 PFLOP 

1 TFLOP 

Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf 
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The birth of Supercomputing 

 The CRAY-1A: 

 2.5-nanosecond clock,  

 64 vector registers, 

 1 million 64-bit words of high-

speed memory.  

 Peak speed: 

• 80 MFLOPS scalar. 

• 250 MFLOPS vector (but 

this was VERY hard to 

achieve) 

 Cray software … by 1978  

 Cray Operating System 

(COS),  

 the first automatically 

vectorizing Fortran compiler 

(CFT), 

 Cray Assembler Language 

(CAL) were introduced.  

 

 On July 11, 1977, the CRAY-1A, serial 

number 3, was delivered to NCAR. The 

system cost was $8.86 million ($7.9 

million plus $1 million for the disks).  

http://www.cisl.ucar.edu/computers/gallery/cray/cray1.jsp 
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History of Supercomputing:  

The Era of the Vector Supercomputer  Large mainframes that operated on vectors of data 

 Custom built, highly specialized hardware and software 

 Multiple processors in an shared memory configuration 

 Required modest changes to software (vectorization) 

The Cray C916/512 at the Pittsburgh 

Supercomputer Center 
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The attack of the killer micros 

 The Caltech Cosmic 

Cube developed by 

Charles Seitz and 

Geoffrey Fox in1981 

 64 Intel 8086/8087 

processors 

 128kB of memory per 

processor 

 6-dimensional hypercube 

network 

 

http://calteches.library.caltech.edu/3419/1/Cubism.pdf 

 

The cosmic cube, Charles Seitz 

Communications of the ACM, Vol 28, number 1 January 

1985, p. 22  

Launched the “attack of 

the killer micros”  
Eugene Brooks, SC’90 

http://calteches.library.caltech.edu/3419/1/Cubism.pdf
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It took a while, but MPPs came to 

dominate supercomputing 

 Parallel computers with large numbers of microprocessors  

 High speed, low latency, scalable interconnection networks  

 Lots of custom hardware to support scalability 

 Required massive changes to software (parallelization)  

Paragon XPS-140 at Sandia 

National labs in Albuquerque 
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The cost advantage of mass market COTS 

 MPPs using Mass market Commercial off the shelf (COTS) 

microprocessors  and standard memory and I/O components 

 Decreased hardware and software costs makes huge systems 

affordable 
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The MPP future looked bright … but 

then clusters took over 

 A cluster is a collection of connected, independent computers that work 

in unison to solve a problem. 

 Nothing is custom … motivated users could build cluster on their own 

 

 
 First clusters appeared in 

the late 80’s (Stacks of 

“SPARC pizza boxes”) 

 The Intel Pentium Pro in 

1995 coupled with Linux 

made them competitive. 

 NASA Goddard’s Beowulf 

cluster demonstrated 

publically that high visibility 

science could be done on 

clusters. 

 Clusters made it easier to 

bring the benefits due to 

Moores’s law into working 

supercomputers 
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Top 500 list: System Architecture  

*Constellation: A cluster for which the  number of processors on a node is greater than the number of 

nodes in the cluster.  I’ve never seen anyone use this term outside of the top500 list. 

* 

Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf 
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MPI (1992-today) 

 The message passing interface (MPI) is a standard library 

 MPI Forum first met April 1992,  

 MPI 1.0 in June 1994 

 MPI  2.0 in July 1997 

 MPI 3.0 in September 2012 

 Hardware-portable, multi-language communication library 

 Enabled billions of dollars of applications 

 Work on MPI 3.1 and 4.0 is in progress.     

MPI Forum, March 2008, Chicago 

15 
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MPI Hello World 

#include <stdio.h> 

#include <mpi.h> 

int main (int argc, char **argv){ 

    int rank, size; 

    MPI_Init (&argc, &argv); 

    MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

    MPI_Comm_size (MPI_COMM_WORLD, &size); 

    printf( "Hello from process %d of %d\n", 

                                rank, size ); 

    MPI_Finalize(); 

    return 0; 

} 
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Initializing and finalizing MPI 

#include <stdio.h> 

#include <mpi.h> 

int main (int argc, char **argv){ 

    int rank, size; 

    MPI_Init (&argc, &argv); 

    MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

    MPI_Comm_size (MPI_COMM_WORLD, &size); 

    printf( "Hello from process %d of %d\n", 

                                rank, size ); 

    MPI_Finalize(); 

    return 0; 

} 

int MPI_Init (int* argc, char* argv[]) 

 Initializes the MPI library … called before any 

other MPI functions. 

 agrc and argv are the command line args passed 

from main() 

int MPI_Finalize (void) 

 Frees memory allocated by the MPI library … close 
every MPI program with a call to MPI_Finalize 
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How many processes are involved? 

#include <stdio.h> 

#include <mpi.h> 

int main (int argc, char **argv){ 

    int rank, size; 

    MPI_Init (&argc, &argv); 

    MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

    MPI_Comm_size (MPI_COMM_WORLD, &size); 

    printf( "Hello from process %d of %d\n", 

                                rank, size ); 

    MPI_Finalize(); 

    return 0; 

} 

int MPI_Comm_size (MPI_Comm comm, int* size) 

 MPI_Comm, an opaque data type, a communication context.  Default 

context: MPI_COMM_WORLD (all processes)  

 MPI_Comm_size returns the number of processes in the process 

group associated with the communicator 

Communicators consist of 

two parts, a context and a 

process group.   

 

The communicator lets me 

control how groups of 

messages interact. 

 

The communicator lets me 

write modular SW … i.e. I 

can give a library module its 

own communicator and 

know that it’s messages 

can’t collide with messages 

originating from outside the 

module 
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Which process “am I” (the rank) 

#include <stdio.h> 

#include <mpi.h> 

int main (int argc, char **argv){ 

    int rank, size; 

    MPI_Init (&argc, &argv); 

    MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

    MPI_Comm_size (MPI_COMM_WORLD, &size); 

    printf( "Hello from process %d of %d\n", 

                                rank, size ); 

    MPI_Finalize(); 

    return 0; 

} 

int MPI_Comm_rank (MPI_Comm comm, int* rank) 

 MPI_Comm, an opaque data type, a communication context.  Default 

context: MPI_COMM_WORLD (all processes)  

 MPI_Comm_rank An integer ranging from 0 to “(num of procs)-1” 

Note that other than init() 

and finalize(), every MPI 

function has a 

communicator. 

 

This makes sense .. You 

need a context and group of 

processes that the MPI 

functions impact … and 

those come from the 

communicator. 
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Running the program 

#include <stdio.h> 

#include <mpi.h> 

int main (int argc, char **argv){ 

    int rank, size; 

    MPI_Init (&argc, &argv); 

    MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

    MPI_Comm_size (MPI_COMM_WORLD, &size); 

    printf( "Hello from process %d of %d\n", 

                                rank, size ); 

    MPI_Finalize(); 

    return 0; 

} 

 On a 4 node cluster with 

MPIch2, I’d run this program 

(hello) as: 

       > mpicc hello.c –o hello 

> mpiexec –n 4 –f hostf hello 

Hello from process 1 of 4 

Hello from process 2 of 4 

Hello from process 0 of 4 

Hello from process 3 of 4 

• Where “hostf” is a file with the 

names of the cluster nodes, 

one to a line. 
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Sending and Receiving Data 

 MPI_Send performs a blocking send of the specified data (“count” 

copies of type “datatype,” stored in “buf”) to the specified destination 

(rank “dest” within communicator “comm”), with message ID “tag” 

int MPI_Send (void* buf, int count, 

 MPI_Datatype datatype, int dest, 

 int tag, MPI_Comm comm)   

 

int MPI_Recv (void* buf, int count, 

 MPI_Datatype datatype, int source, 

 int tag, MPI_Comm comm, 

 MPI_Status* status) 

 

 MPI_Recv performs a blocking receive of specified data from specified 

source whose parameters match the send; information about transfer is 

stored in “status” 

By “blocking” we mean the functions return as soon as the buffer, “buf”, can be 

safely used. 
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The data in a message: datatypes 

 The data in a message to send or receive is described by a triple: 

  (address, count, datatype) 

 An MPI datatype is recursively defined as: 

 Predefined, simple data type from the language (e.g., MPI_DOUBLE) 

 Complex data types (contiguous blocks or even custom types). 

 E.g.  … A particle’s state is defined by its 3 coordinates and 3 velocities 

MPI_Datatype PART; 

MPI_Type_contiguous( 6, MPI_DOUBLE, &PART ); 

MPI_Type_commit( &PART ); 

 You can use this data type in MPI functions, for example, to send data for a 

single particle: 

   MPI_Send (buff, 1, PART, Dest, tag, MPI_COMM_WORLD); 

address 
count 

Datatype 
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Receiving the right message 

 The receiving process identifies messages with the double : 

  (source, tag) 

 Where: 

 Source is the rank of the sending process 

 Tag is a user-defined integer to help the receiver keep track of different 

messages from a single source 

 

   MPI_Recv (buff, 1, PART, Src, tag, MPI_COMM_WORLD, &status); 

Source tag 

 Can relax tag checking by specifying MPI_ANY_TAG as the tag in a receive. 

 Can relax source checking by specifying MPI_ANY_SOURCE 

   MPI_Recv (buff, 1, PART, MPI_ANY_SOURCE, MPI_ANY_TAG,  

                                                               MPI_COMM_WORLD, &status); 

 This is a useful way to insert race conditions into an MPI program 
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How do people use MPI? 

The SPMD Design Pattern 

Replicate the program. 

Add glue code 

Break up the data 

A sequential program 

working on a data set 

•A  single program working on a 

decomposed data set. 

•Use Node ID and numb of nodes to 

split up work between processes 

• Coordination by passing messages. 
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A Simple MPI Program 

#include “mpi.h” 
#include <stdio.h> 

int main( int argc, char *argv[]) 

{ int rank, buf; 

  MPI_Status status; 

  MPI_Init(&argv, &argc);    

  MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 

  /* Process 0 sends and Process 1 receives */ 

  if (rank == 0) { 

    buf = 123456; 

    MPI_Send( &buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD); 

  } 

  else if (rank == 1) { 

    MPI_Recv( &buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,  

              &status ); 

    printf( “Received %d\n”, buf ); 
  } 

  MPI_Finalize(); 

  return 0; 

} 

Slide source: Bill Gropp, ANL 
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Buffers 

 Message passing has a small set of primitives, but there are subtleties 

 Buffering and deadlock 

 Deterministic execution 

 Performance  

 When you send data, where does it go?  One possibility is: 

Process 0 Process 1 

User data 

Local buffer 

the network 

User data 

Local buffer 

8/20/2013 Derived from: Bill Gropp, UIUC 
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Blocking Send-Receive Timing Diagram 
(Receive before Send) 

send side                               receive side 

MPI_Send:  T1 

T4: MPI_Recv returns 

MPI_Send returns T2 

Once receive 

is called @ T0, 

Local buffer unavailable 

to user 

Local buffer filled and  

available to user 

It is important to post the receive before 

sending, for highest performance.  

T0: MPI_Recv 

Local 

buffer can 

be reused 

T3: Transfer Complete 

time time 
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 Send a large message from process 0 to process 1 

 If there is insufficient storage at the destination, the send 
must wait for the user to provide the memory space (through 
a receive) 

 What happens with this code? 
 
 
 
 

 

Sources of Deadlocks 

Process 0 

 
Send(1) 

Recv(1) 

Process 1 

 
Send(0) 

Recv(0) 

• This code could deadlock … it depends on the 
availability of system buffers in which to store the data 
sent until it can be received  

Slide source: based on slides from Bill Gropp, UIUC 
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Some Solutions to the “deadlock” Problem 

 Order the operations more carefully: 

• Supply receive buffer at same time as send: 

Process 0 

 
Send(1) 

Recv(1) 

Process 1 

 
Recv(0) 

Send(0) 

Process 0 

 

Sendrecv(1) 

Process 1 

 
Sendrecv(0) 

8/20/2013 Slide source: Bill Gropp, UIUC 
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More Solutions to the “unsafe” Problem 

 Supply a sufficiently large buffer in the send function 

• Use non-blocking operations: 

Process 0 

 
Bsend(1) 

Recv(1) 

Process 1 

 
Bsend(0) 

Recv(0) 

Process 0 

 
Isend(1) 

Irecv(1) 

Waitall 

Process 1 

 
Isend(0) 

Irecv(0) 

Waitall 

8/20/2013 Slide source: Bill Gropp, UIUC 
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Non-Blocking Communication 

 Non-blocking operations return immediately and pass ‘‘request handles” 
that can be waited on and queried 

 

• MPI_ISEND( start, count, datatype, dest, tag, comm, request ) 

• MPI_IRECV( start, count, datatype, src, tag, comm, request ) 

• MPI_WAIT( request, status ) 

 

 One can also test without waiting using  MPI_TEST 

 

• MPI_TEST( request, flag, status ) 

 

 Anywhere you use MPI_Send or  MPI_Recv, you can use the pair of 
MPI_Isend/MPI_Wait or  MPI_Irecv/MPI_Wait 

Non-blocking operations are extremely important … they 

allow you to overlap computation and communication. 
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buffer unavailable 

to user 

Non-Blocking Send-Receive Diagram 

send side             receive side 

MPI_Isend 

T8: MPI_Wait returns 

T3 buffer unavailable 

to user 

receive buffer 

filled and available 

to the user 

T0: MPI_Irecv 

T7: transfer finishes 

T4: MPI_Wait called 

MPI_Wait 

T1: MPI_Irecv Returns 

T5 

time time 

T2 

MPI_Isend returns 

T6 

T9 

Sender completes 

MPI_Wait returns 

buffer available 

to user 
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Example: shift messages around a ring 

(part 1 of 2) 

#include <stdio.h> 

#include <mpi.h> 

 

int main(int argc, char **argv) 

{ 

  int num, rank, size, tag, next, from; 

  MPI_Status status1, status2; 

  MPI_Request req1, req2; 

 

  MPI_Init(&argc, &argv); 

  MPI_Comm_rank( MPI_COMM_WORLD, &rank); 

  MPI_Comm_size( MPI_COMM_WORLD, &size); 

  tag = 201; 

  next = (rank+1) % size; 

  from = (rank + size - 1) % size; 

  if (rank == 0) { 

    printf("Enter the number of times around the ring: "); 

    scanf("%d", &num); 

 

    printf("Process %d sending %d to %d\n", rank, num, next); 

    MPI_Isend(&num, 1, MPI_INT, next, tag, MPI_COMM_WORLD,&req1); 

    MPI_Wait(&req1, &status1); 

  }  
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Example: shift messages around a ring 

(part 2 of 2) 
 do { 

    MPI_Irecv(&num, 1, MPI_INT, from, tag, MPI_COMM_WORLD, &req2); 

    MPI_Wait(&req2, &status2); 

    printf("Process %d received %d from process %d\n", rank, num, from); 

 

    if (rank == 0) { 

      num--; 

      printf("Process 0 decremented number\n"); 

    } 

 

    printf("Process %d sending %d to %d\n", rank, num, next); 

    MPI_Isend(&num, 1, MPI_INT, next, tag, MPI_COMM_WORLD, &req1); 

    MPI_Wait(&req1, &status1); 

  } while (num != 0); 

 

  if (rank == 0) { 

    MPI_Irecv(&num, 1, MPI_INT, from, tag, MPI_COMM_WORLD, &req2); 

    MPI_Wait(&req2, &status2); 

  } 

 

  MPI_Finalize(); 

  return 0; 

}  
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Reduction 

 int MPI_Reduce (void* sendbuf, 

  void* recvbuf, int count, 

  MPI_Datatype datatype, MPI_Op op, 

  int root, MPI_Comm comm) 

• MPI_Reduce performs specified reduction operation on specified data 

from all processes in communicator, places result in process “root” only. 

• MPI_Allreduce places result in all processes (avoid unless necessary) 

Operation Function 

MPI_SUM Summation 

MPI_PROD Product 

MPI_MIN Minimum value 

MPI_MINLOC Minimum value and location 

MPI_MAX Maximum value 

MPI_MAXLOC Maximum value and location 

MPI_LAND Logical AND 

Operation Function 

MPI_BAND Bitwise AND 

MPI_LOR Logical OR 

MPI_BOR Bitwise OR 

MPI_LXOR Logical exclusive OR 

MPI_BXOR Bitwise exclusive OR 

User-defined It is possible to define new 
reduction operations 



38 

Pi program in MPI  

#include <mpi.h> 

void main (int argc, char *argv[]) 

{ 

 int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ; 

 step = 1.0/(double) num_steps ; 

   MPI_Init(&argc, &argv) ; 

 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ; 

 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ; 

   

 for (i=my_id; i<num_steps;  i=i+numprocs) 

 { 

    x = (i+0.5)*step; 

    sum += 4.0/(1.0+x*x); 

 } 

 sum *= step ;  

 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 

  MPI_COMM_WORLD) ; 

} 
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MPI Pi program performance 

*Intel compiler (icpc) with –O3 on Apple OS X 10.7.3 with a dual core (four HW thread) 

Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 

Thread 

or procs 

OpenMP 

SPMD 

critical 

OpenMP 

PI Loop 

MPI 

1 0.85 0.43 0.84 

2 0.48 0.23 0.48 

3 0.47 0.23 0.46 

4 0.46 0.23 0.46 

Note: OMP loop used a 

Blocked loop distribution.  

The others used a cyclic 

distribution.  Serial .. 0.43. 
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Bulk Synchronous Processing 

 Many MPI applications have few (if any) sends and receives. They 

use a design pattern called “Bulk Synchronous Processing”. 

 
 Uses the Single Program Multiple Data 

pattern 

 Each process maintains a local view of 

the global data 

 A problem broken down into phases each 

composed of two subphases: 

• Compute on local view of data 

• Communicate to update global view 

on all processes (collective 

communication). 

 Continue phases until complete 

 

Collective comm. 

Collective comm. 
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MPI Collective Routines 

 Collective communications: called by all processes in the group to 

create a global result and share with all participating processes. 

 Allgather, Allgatherv, Allreduce, Alltoall, 

Alltoallv, Bcast, Gather, Gatherv, Reduce, 

Reduce_scatter, Scan, Scatter, Scatterv  

 Notes: 

 Allreduce, Reduce, Reduce_scatter, and Scan use the 
same set of built-in or user-defined combiner functions.  

 Routines with the “All” prefix deliver results to all participating 
processes 

 Routines with the “v” suffix allow chunks to have different sizes 

 Global synchronization is available in MPI 

 MPI_Barrier( comm ) 

 Blocks until all processes in the group of the communicator comm call it. 
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Collective Data Movement 

A 

B 

D 

C 

B C D 

A 

A 

A 

A 

Broadcast 

Scatter 

Gather 

A 

A 

P0 

P1 

P2 

P3 

P0 

P1 

P2 

P3 
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More Collective Data Movement 

A 

B 

D 

C 

A0 B0 C0 D0 

A1 B1 C1 D1 

A3 B3 C3 D3 

A2 B2 C2 D2 

A0 A1 A2 A3 

B0 B1 B2 B3 

D0 D1 D2 D3 

C0 C1 C2 C3 

A B C D 

A B C D 

A B C D 

A B C D 

Allgather 

Alltoall 

P0 

P1 

P2 

P3 

P0 

P1 

P2 

P3 
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Collective Computation 

P0 

P1 

P2 

P3 

P0 

P1 

P2 

P3 

A 

B 

D 

C 

A 

B 

D 

C 

ABCD 

A 
AB 

ABC 

ABCD 

Reduce 

Scan 
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MPI topics we did Not Cover 

 Topologies: map a communicator onto, say, a 3D Cartesian 

processor grid 

 Implementation can provide ideal logical to physical mapping 

 Rich set of I/O functions: individual, collective, blocking and non-

blocking 

 Collective I/O can lead to many small requests being merged 

for more efficient I/O 

 One-sided communication: puts and gets with various 

synchronization schemes 

 Implementations not well-optimized and rarely used 

 Redesign of interface is underway 

 Task creation and destruction: change number of tasks during a 

run 

 Few implementations available 
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MPI isn’t as hard as many belive … 

 There are over 330 functions in the MPI spec, but most programs 

only use a small subset: 

 Point-to-point communication 

• MPI_Irecv, MPI_Isend, MPI_Wait, MPI_Send, MPI_Recv 

 Startup 

• MPI_Init, MPI_Finalize 

 Information on the processes  

• MPI_Comm_rank, MPI_Comm_size,   

 Collective communication 

• MPI_Allreduce, MPI_Bcast, MPI_Allgather 
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Isn’t message passing much harder 
than multithreading?   

Time 

E
ffo

rt 

Extra work upfront,  but easier 
optimization and debugging means 

overall, less time to solution 
Message passing 

Time 

E
ffo

rt 

initial parallelization can be 
quite easy  

Multi-threading 

But difficult debugging and 
optimization means overall 

project takes longer  

*P. N. Klein, H. Lu, and R. H. B. Netzer, Detecting Race Conditions in Parallel Programs that Use Semaphores, Algorithmica,  vol. 35 pp. 321–345, 2003 

Proving that a shared address space program using 

semaphores is race free is an NP-complete problem* 
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MPI References 

 The Standard itself: 

 at http://www.mpi-forum.org 

 All MPI official releases, in both postscript and 

HTML 

 Other information on Web: 

 at http://www.mcs.anl.gov/mpi 

 pointers to lots of stuff, including other talks and 

tutorials, a FAQ, other MPI pages 

Slide source: Bill Gropp, ANL 

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/mpi
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Books on 

MPI 

 Using MPI:  Portable Parallel Programming  

with the Message-Passing Interface (2nd edition),  

by Gropp, Lusk, and Skjellum, MIT Press,  

1999. 

 Using MPI-2:  Portable Parallel Programming  

with the Message-Passing Interface, by Gropp,  

Lusk, and Thakur, MIT Press, 1999. 

 MPI:  The Complete Reference - Vol 1 The MPI Core, by 

Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT 

Press, 1998. 

 MPI: The Complete Reference - Vol 2 The MPI 

Extensions, by Gropp, Huss-Lederman, Lumsdaine, Lusk, 

Nitzberg, Saphir, and Snir, MIT Press, 1998. 

 Designing and Building Parallel Programs, by Ian Foster, 

Addison-Wesley, 1995. 

 Parallel Programming with MPI, by Peter Pacheco, 

Morgan-Kaufmann, 1997. 

Slide source: Bill Gropp, ANL 
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Backup 

 The key constructs of MPI 

 MPI_Init() and MPI_Finalize() 

 MPI_Comm_rize() and MPI_Comm_rank() 

 MPI_Send() and MPI_Recv() 

 MPI_Isend(), MPI_Irecv(), and MPI_Wait() 

 MPI_Bcast(), MPI_Reduce(), MPI_Gather(), and MPI_Scatter() 

 MPI_Barrier() 

To do:  I need a page for each one of these 

similar to the one I have now for MPI_send 

and MPI_Recv 
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Blocking Send and Receive 

 MPI_Send performs a blocking send of the specified data (“count” 

copies of type “datatype,” stored in “buf”) to the specified destination 

(rank “dest” within communicator “comm”), with message ID “tag” 

int MPI_Send (void* buf, int count, 

 MPI_Datatype datatype, int dest, 

 int tag, MPI_Comm comm)   

 

int MPI_Recv (void* buf, int count, 

 MPI_Datatype datatype, int source, 

 int tag, MPI_Comm comm, 

 MPI_Status* status) 

 

 MPI_Recv performs a blocking receive of specified data from specified 

source whose parameters match the send; information about transfer is 

stored in “status” 

By “blocking” we mean the functions return as soon as the buffer, “buf”, can be 

safely used. 
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Non-Blocking Comminication 

 Non-blocking operations return immediately and pass ‘‘request handles” 
that can be waited on and queried 

• MPI_ISEND( start, count, datatype, dest, tag, comm, request ) 

• MPI_IRECV( start, count, datatype, src, tag, comm, request ) 

• MPI_WAIT( request, status ) 

 One can also test without waiting using  MPI_TEST 

• MPI_TEST( request, flag, status ) 

 Anywhere you use MPI_Send or  MPI_Recv, you can use the pair of 
MPI_Isend/MPI_Wait or  MPI_Irecv/MPI_Wait 

Non-blocking operations are extremely important … they 

allow you to overlap computation and communication. 
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Launching and closing MPI 

 These functions “bracket” every MPI program 

int MPI_Init (int* argc, char* argv[]) 

 Initializes the MPI library … called before any 

other MPI functions. 

 agrc and argv are the command line args passed 

from main() 

int MPI_Finalize (void) 

 Frees memory allocated by the MPI library … close 
every MPI program with a call to MPI_Finalize 
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Understanding the process group 

 SPMD pattern: use the ID of each process and the size of the 

process group to choose the data manipulated or the branching 

through the program 

int MPI_Comm_size (MPI_Comm comm, int* size) 

 MPI_Comm, an opaque data type, a communication context.  Default 

context: MPI_COMM_WORLD (all processes)  

 MPI_Comm_size returns the number of processes in the process 

group associated with the communicator 

int MPI_Comm_rank (MPI_Comm comm, int* rank) 

 MPI_Comm, an opaque data type, a communication context.  Default 

context: MPI_COMM_WORLD (all processes)  

 MPI_Comm_rank An integer ranging from 0 to “(num of procs)-1” 


