
1 1

Programming Distributed
Memory Systems with MPI

Tim Mattson

Intel Labs.

With content from Kathy Yelick, Jim Demmel, Kurt Keutzer (CS194) and others

in the UCB EECS community. www.cs.berkeley.edu/~yelick/cs194f07,

http://www.cs.berkeley.edu/~yelick/cs194f07

2

Outline

 Distributed memory systems: the evolution of HPC hardware

 Programming distributed memory systems with MPI

 MPI introduction and core elements

 Message passing details

 Collective operations

 Closing comments

4

Tracking Supercomputers: Top500

 Top500: a list of the 500 fastest computers in the world (www.top500.org)

 Computers ranked by solution to the MPLinpack benchmark:

 Solve Ax=b problem for any order of A

 List released twice per year: in June and November

Current number 1 (June 2013) 33.9 PFLOPS

Tianhe-2, NUDT, Intel Ivy Bridge + Xeon Phi

16.3 PFLOPS, >1.5 million cores

1 PFLOP

1 TFLOP

Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf

6

The birth of Supercomputing

 The CRAY-1A:

 2.5-nanosecond clock,

 64 vector registers,

 1 million 64-bit words of high-

speed memory.

 Peak speed:

• 80 MFLOPS scalar.

• 250 MFLOPS vector (but

this was VERY hard to

achieve)

 Cray software … by 1978

 Cray Operating System

(COS),

 the first automatically

vectorizing Fortran compiler

(CFT),

 Cray Assembler Language

(CAL) were introduced.

 On July 11, 1977, the CRAY-1A, serial

number 3, was delivered to NCAR. The

system cost was $8.86 million ($7.9

million plus $1 million for the disks).

http://www.cisl.ucar.edu/computers/gallery/cray/cray1.jsp

7

0

10

20

30

40

50

60

Vector

History of Supercomputing:

The Era of the Vector Supercomputer  Large mainframes that operated on vectors of data

 Custom built, highly specialized hardware and software

 Multiple processors in an shared memory configuration

 Required modest changes to software (vectorization)

The Cray C916/512 at the Pittsburgh

Supercomputer Center

C
ra

y
 2

 (
4
),

 1
9
8
5

C
ra

y
 Y

M
P

 (
8
),

 1
9
8
9

C
ra

y
 T

9
3
2
 (

3
2
),

 1
9
9
6

P
e
a
k

 G
F

L
O

P
S

C
ra

y
 C

9
1
6
 (

1
6
),

 1
9
9
1

Vector

8

The attack of the killer micros

 The Caltech Cosmic

Cube developed by

Charles Seitz and

Geoffrey Fox in1981

 64 Intel 8086/8087

processors

 128kB of memory per

processor

 6-dimensional hypercube

network

http://calteches.library.caltech.edu/3419/1/Cubism.pdf

The cosmic cube, Charles Seitz

Communications of the ACM, Vol 28, number 1 January

1985, p. 22

Launched the “attack of

the killer micros”
Eugene Brooks, SC’90

http://calteches.library.caltech.edu/3419/1/Cubism.pdf

9

0

20

40

60

80

100

120

140

160

180

200

Vector MPP

It took a while, but MPPs came to

dominate supercomputing

 Parallel computers with large numbers of microprocessors

 High speed, low latency, scalable interconnection networks

 Lots of custom hardware to support scalability

 Required massive changes to software (parallelization)

Paragon XPS-140 at Sandia

National labs in Albuquerque

NM

P
e
a
k

 G
F

L
O

P
S

iP
S

C
\8

6
0
(1

2
8
)

1
9
9
0
.

P
a
ra

g
o

n
 X

P
S

 1
9
9
3

T
M

C
 C

M
5

-(
1
0
2
4
)

1
9
9
2

Vector MPP

10

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Vector MPP CCOTS MPP

IB
M

 S
P

/5
7
2
 (

4
6
0
)

In
te

l
T

F
L

O
P
,

 (
4
5

3
6

)

The cost advantage of mass market COTS

 MPPs using Mass market Commercial off the shelf (COTS)

microprocessors and standard memory and I/O components

 Decreased hardware and software costs makes huge systems

affordable

P
e
a
k
 G

F
L
O

P
S

ASCI Red TFLOP Supercomputer

Vector MPP MM-COTS MPP

11

The MPP future looked bright … but

then clusters took over

 A cluster is a collection of connected, independent computers that work

in unison to solve a problem.

 Nothing is custom … motivated users could build cluster on their own

 First clusters appeared in

the late 80’s (Stacks of

“SPARC pizza boxes”)

 The Intel Pentium Pro in

1995 coupled with Linux

made them competitive.

 NASA Goddard’s Beowulf

cluster demonstrated

publically that high visibility

science could be done on

clusters.

 Clusters made it easier to

bring the benefits due to

Moores’s law into working

supercomputers

12

Top 500 list: System Architecture

*Constellation: A cluster for which the number of processors on a node is greater than the number of

nodes in the cluster. I’ve never seen anyone use this term outside of the top500 list.

*

Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf

14

Outline

 Distributed memory systems: the evolution of HPC hardware

 Programming distributed memory systems with MPI

 MPI introduction and core elements

 Message passing details

 Collective operations

 Closing comments

15

MPI (1992-today)

 The message passing interface (MPI) is a standard library

 MPI Forum first met April 1992,

 MPI 1.0 in June 1994

 MPI 2.0 in July 1997

 MPI 3.0 in September 2012

 Hardware-portable, multi-language communication library

 Enabled billions of dollars of applications

 Work on MPI 3.1 and 4.0 is in progress.

MPI Forum, March 2008, Chicago

15

16

MPI Hello World

#include <stdio.h>

#include <mpi.h>

int main (int argc, char **argv){

 int rank, size;

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 printf("Hello from process %d of %d\n",

 rank, size);

 MPI_Finalize();

 return 0;

}

17

Initializing and finalizing MPI

#include <stdio.h>

#include <mpi.h>

int main (int argc, char **argv){

 int rank, size;

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 printf("Hello from process %d of %d\n",

 rank, size);

 MPI_Finalize();

 return 0;

}

int MPI_Init (int* argc, char* argv[])

 Initializes the MPI library … called before any

other MPI functions.

 agrc and argv are the command line args passed

from main()

int MPI_Finalize (void)

 Frees memory allocated by the MPI library … close
every MPI program with a call to MPI_Finalize

18

How many processes are involved?

#include <stdio.h>

#include <mpi.h>

int main (int argc, char **argv){

 int rank, size;

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 printf("Hello from process %d of %d\n",

 rank, size);

 MPI_Finalize();

 return 0;

}

int MPI_Comm_size (MPI_Comm comm, int* size)

 MPI_Comm, an opaque data type, a communication context. Default

context: MPI_COMM_WORLD (all processes)

 MPI_Comm_size returns the number of processes in the process

group associated with the communicator

Communicators consist of

two parts, a context and a

process group.

The communicator lets me

control how groups of

messages interact.

The communicator lets me

write modular SW … i.e. I

can give a library module its

own communicator and

know that it’s messages

can’t collide with messages

originating from outside the

module

19

Which process “am I” (the rank)

#include <stdio.h>

#include <mpi.h>

int main (int argc, char **argv){

 int rank, size;

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 printf("Hello from process %d of %d\n",

 rank, size);

 MPI_Finalize();

 return 0;

}

int MPI_Comm_rank (MPI_Comm comm, int* rank)

 MPI_Comm, an opaque data type, a communication context. Default

context: MPI_COMM_WORLD (all processes)

 MPI_Comm_rank An integer ranging from 0 to “(num of procs)-1”

Note that other than init()

and finalize(), every MPI

function has a

communicator.

This makes sense .. You

need a context and group of

processes that the MPI

functions impact … and

those come from the

communicator.

20

Running the program

#include <stdio.h>

#include <mpi.h>

int main (int argc, char **argv){

 int rank, size;

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 printf("Hello from process %d of %d\n",

 rank, size);

 MPI_Finalize();

 return 0;

}

 On a 4 node cluster with

MPIch2, I’d run this program

(hello) as:

 > mpicc hello.c –o hello

> mpiexec –n 4 –f hostf hello

Hello from process 1 of 4

Hello from process 2 of 4

Hello from process 0 of 4

Hello from process 3 of 4

• Where “hostf” is a file with the

names of the cluster nodes,

one to a line.

21

Sending and Receiving Data

 MPI_Send performs a blocking send of the specified data (“count”

copies of type “datatype,” stored in “buf”) to the specified destination

(rank “dest” within communicator “comm”), with message ID “tag”

int MPI_Send (void* buf, int count,

 MPI_Datatype datatype, int dest,

 int tag, MPI_Comm comm)

int MPI_Recv (void* buf, int count,

 MPI_Datatype datatype, int source,

 int tag, MPI_Comm comm,

 MPI_Status* status)

 MPI_Recv performs a blocking receive of specified data from specified

source whose parameters match the send; information about transfer is

stored in “status”

By “blocking” we mean the functions return as soon as the buffer, “buf”, can be

safely used.

22

The data in a message: datatypes

 The data in a message to send or receive is described by a triple:

 (address, count, datatype)

 An MPI datatype is recursively defined as:

 Predefined, simple data type from the language (e.g., MPI_DOUBLE)

 Complex data types (contiguous blocks or even custom types).

 E.g. … A particle’s state is defined by its 3 coordinates and 3 velocities

MPI_Datatype PART;

MPI_Type_contiguous(6, MPI_DOUBLE, &PART);

MPI_Type_commit(&PART);

 You can use this data type in MPI functions, for example, to send data for a

single particle:

 MPI_Send (buff, 1, PART, Dest, tag, MPI_COMM_WORLD);

address
count

Datatype

23

Receiving the right message

 The receiving process identifies messages with the double :

 (source, tag)

 Where:

 Source is the rank of the sending process

 Tag is a user-defined integer to help the receiver keep track of different

messages from a single source

 MPI_Recv (buff, 1, PART, Src, tag, MPI_COMM_WORLD, &status);

Source tag

 Can relax tag checking by specifying MPI_ANY_TAG as the tag in a receive.

 Can relax source checking by specifying MPI_ANY_SOURCE

 MPI_Recv (buff, 1, PART, MPI_ANY_SOURCE, MPI_ANY_TAG,

 MPI_COMM_WORLD, &status);

 This is a useful way to insert race conditions into an MPI program

24

How do people use MPI?

The SPMD Design Pattern

Replicate the program.

Add glue code

Break up the data

A sequential program

working on a data set

•A single program working on a

decomposed data set.

•Use Node ID and numb of nodes to

split up work between processes

• Coordination by passing messages.

25

A Simple MPI Program

#include “mpi.h”
#include <stdio.h>

int main(int argc, char *argv[])

{ int rank, buf;

 MPI_Status status;

 MPI_Init(&argv, &argc);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 /* Process 0 sends and Process 1 receives */

 if (rank == 0) {

 buf = 123456;

 MPI_Send(&buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

 }

 else if (rank == 1) {

 MPI_Recv(&buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,

 &status);

 printf(“Received %d\n”, buf);
 }

 MPI_Finalize();

 return 0;

}

Slide source: Bill Gropp, ANL

26

Outline

 Distributed memory systems: the evolution of HPC hardware

 Programming distributed memory systems with MPI

 MPI introduction and core elements

 Message passing details

 Collective operations

 Closing comments

27

Buffers

 Message passing has a small set of primitives, but there are subtleties

 Buffering and deadlock

 Deterministic execution

 Performance

 When you send data, where does it go? One possibility is:

Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

8/20/2013 Derived from: Bill Gropp, UIUC

28

Blocking Send-Receive Timing Diagram
(Receive before Send)

send side receive side

MPI_Send: T1

T4: MPI_Recv returns

MPI_Send returns T2

Once receive

is called @ T0,

Local buffer unavailable

to user

Local buffer filled and

available to user

It is important to post the receive before

sending, for highest performance.

T0: MPI_Recv

Local

buffer can

be reused

T3: Transfer Complete

time time

29

 Send a large message from process 0 to process 1

 If there is insufficient storage at the destination, the send
must wait for the user to provide the memory space (through
a receive)

 What happens with this code?

Sources of Deadlocks

Process 0

Send(1)

Recv(1)

Process 1

Send(0)

Recv(0)

• This code could deadlock … it depends on the
availability of system buffers in which to store the data
sent until it can be received

Slide source: based on slides from Bill Gropp, UIUC

30

Some Solutions to the “deadlock” Problem

 Order the operations more carefully:

• Supply receive buffer at same time as send:

Process 0

Send(1)

Recv(1)

Process 1

Recv(0)

Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)

8/20/2013 Slide source: Bill Gropp, UIUC

31

More Solutions to the “unsafe” Problem

 Supply a sufficiently large buffer in the send function

• Use non-blocking operations:

Process 0

Bsend(1)

Recv(1)

Process 1

Bsend(0)

Recv(0)

Process 0

Isend(1)

Irecv(1)

Waitall

Process 1

Isend(0)

Irecv(0)

Waitall

8/20/2013 Slide source: Bill Gropp, UIUC

32

Non-Blocking Communication

 Non-blocking operations return immediately and pass ‘‘request handles”
that can be waited on and queried

• MPI_ISEND(start, count, datatype, dest, tag, comm, request)

• MPI_IRECV(start, count, datatype, src, tag, comm, request)

• MPI_WAIT(request, status)

 One can also test without waiting using MPI_TEST

• MPI_TEST(request, flag, status)

 Anywhere you use MPI_Send or MPI_Recv, you can use the pair of
MPI_Isend/MPI_Wait or MPI_Irecv/MPI_Wait

Non-blocking operations are extremely important … they

allow you to overlap computation and communication.

33

buffer unavailable

to user

Non-Blocking Send-Receive Diagram

send side receive side

MPI_Isend

T8: MPI_Wait returns

T3 buffer unavailable

to user

receive buffer

filled and available

to the user

T0: MPI_Irecv

T7: transfer finishes

T4: MPI_Wait called

MPI_Wait

T1: MPI_Irecv Returns

T5

time time

T2

MPI_Isend returns

T6

T9

Sender completes

MPI_Wait returns

buffer available

to user

34

Example: shift messages around a ring

(part 1 of 2)

#include <stdio.h>

#include <mpi.h>

int main(int argc, char **argv)

{

 int num, rank, size, tag, next, from;

 MPI_Status status1, status2;

 MPI_Request req1, req2;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 tag = 201;

 next = (rank+1) % size;

 from = (rank + size - 1) % size;

 if (rank == 0) {

 printf("Enter the number of times around the ring: ");

 scanf("%d", &num);

 printf("Process %d sending %d to %d\n", rank, num, next);

 MPI_Isend(&num, 1, MPI_INT, next, tag, MPI_COMM_WORLD,&req1);

 MPI_Wait(&req1, &status1);

 }

35

Example: shift messages around a ring

(part 2 of 2)
 do {

 MPI_Irecv(&num, 1, MPI_INT, from, tag, MPI_COMM_WORLD, &req2);

 MPI_Wait(&req2, &status2);

 printf("Process %d received %d from process %d\n", rank, num, from);

 if (rank == 0) {

 num--;

 printf("Process 0 decremented number\n");

 }

 printf("Process %d sending %d to %d\n", rank, num, next);

 MPI_Isend(&num, 1, MPI_INT, next, tag, MPI_COMM_WORLD, &req1);

 MPI_Wait(&req1, &status1);

 } while (num != 0);

 if (rank == 0) {

 MPI_Irecv(&num, 1, MPI_INT, from, tag, MPI_COMM_WORLD, &req2);

 MPI_Wait(&req2, &status2);

 }

 MPI_Finalize();

 return 0;

}

36

Outline

 Distributed memory systems: the evolution of HPC hardware

 Programming distributed memory systems with MPI

 MPI introduction and core elements

 Message passing details

 Collective operations

 Closing comments

37

Reduction

 int MPI_Reduce (void* sendbuf,

 void* recvbuf, int count,

 MPI_Datatype datatype, MPI_Op op,

 int root, MPI_Comm comm)

• MPI_Reduce performs specified reduction operation on specified data

from all processes in communicator, places result in process “root” only.

• MPI_Allreduce places result in all processes (avoid unless necessary)

Operation Function

MPI_SUM Summation

MPI_PROD Product

MPI_MIN Minimum value

MPI_MINLOC Minimum value and location

MPI_MAX Maximum value

MPI_MAXLOC Maximum value and location

MPI_LAND Logical AND

Operation Function

MPI_BAND Bitwise AND

MPI_LOR Logical OR

MPI_BOR Bitwise OR

MPI_LXOR Logical exclusive OR

MPI_BXOR Bitwise exclusive OR

User-defined It is possible to define new
reduction operations

38

Pi program in MPI

#include <mpi.h>

void main (int argc, char *argv[])

{

 int i, my_id, numprocs; double x, pi, step, sum = 0.0 ;

 step = 1.0/(double) num_steps ;

 MPI_Init(&argc, &argv) ;

 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;

 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;

 for (i=my_id; i<num_steps; i=i+numprocs)

 {

 x = (i+0.5)*step;

 sum += 4.0/(1.0+x*x);

 }

 sum *= step ;

 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

 MPI_COMM_WORLD) ;

}

39

MPI Pi program performance

*Intel compiler (icpc) with –O3 on Apple OS X 10.7.3 with a dual core (four HW thread)

Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

Thread

or procs

OpenMP

SPMD

critical

OpenMP

PI Loop

MPI

1 0.85 0.43 0.84

2 0.48 0.23 0.48

3 0.47 0.23 0.46

4 0.46 0.23 0.46

Note: OMP loop used a

Blocked loop distribution.

The others used a cyclic

distribution. Serial .. 0.43.

40

Bulk Synchronous Processing

 Many MPI applications have few (if any) sends and receives. They

use a design pattern called “Bulk Synchronous Processing”.

 Uses the Single Program Multiple Data

pattern

 Each process maintains a local view of

the global data

 A problem broken down into phases each

composed of two subphases:

• Compute on local view of data

• Communicate to update global view

on all processes (collective

communication).

 Continue phases until complete

Collective comm.

Collective comm.

41

MPI Collective Routines

 Collective communications: called by all processes in the group to

create a global result and share with all participating processes.

 Allgather, Allgatherv, Allreduce, Alltoall,

Alltoallv, Bcast, Gather, Gatherv, Reduce,

Reduce_scatter, Scan, Scatter, Scatterv

 Notes:

 Allreduce, Reduce, Reduce_scatter, and Scan use the
same set of built-in or user-defined combiner functions.

 Routines with the “All” prefix deliver results to all participating
processes

 Routines with the “v” suffix allow chunks to have different sizes

 Global synchronization is available in MPI

 MPI_Barrier(comm)

 Blocks until all processes in the group of the communicator comm call it.

42

Collective Data Movement

A

B

D

C

B C D

A

A

A

A

Broadcast

Scatter

Gather

A

A

P0

P1

P2

P3

P0

P1

P2

P3

43

CS267 Lecture 7 43

More Collective Data Movement

A

B

D

C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D

A B C D

A B C D

A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

44

CS267 Lecture 7 44

Collective Computation

P0

P1

P2

P3

P0

P1

P2

P3

A

B

D

C

A

B

D

C

ABCD

A
AB

ABC

ABCD

Reduce

Scan

45

Outline

 Distributed memory systems: the evolution of HPC hardware

 Programming distributed memory systems with MPI

 MPI introduction and core elements

 Message passing details

 Collective operations

 Closing comments

46

MPI topics we did Not Cover

 Topologies: map a communicator onto, say, a 3D Cartesian

processor grid

 Implementation can provide ideal logical to physical mapping

 Rich set of I/O functions: individual, collective, blocking and non-

blocking

 Collective I/O can lead to many small requests being merged

for more efficient I/O

 One-sided communication: puts and gets with various

synchronization schemes

 Implementations not well-optimized and rarely used

 Redesign of interface is underway

 Task creation and destruction: change number of tasks during a

run

 Few implementations available

47

MPI isn’t as hard as many belive …

 There are over 330 functions in the MPI spec, but most programs

only use a small subset:

 Point-to-point communication

• MPI_Irecv, MPI_Isend, MPI_Wait, MPI_Send, MPI_Recv

 Startup

• MPI_Init, MPI_Finalize

 Information on the processes

• MPI_Comm_rank, MPI_Comm_size,

 Collective communication

• MPI_Allreduce, MPI_Bcast, MPI_Allgather

48

Isn’t message passing much harder
than multithreading?

Time

E
ffo

rt

Extra work upfront, but easier
optimization and debugging means

overall, less time to solution
Message passing

Time

E
ffo

rt

initial parallelization can be
quite easy

Multi-threading

But difficult debugging and
optimization means overall

project takes longer

*P. N. Klein, H. Lu, and R. H. B. Netzer, Detecting Race Conditions in Parallel Programs that Use Semaphores, Algorithmica, vol. 35 pp. 321–345, 2003

Proving that a shared address space program using

semaphores is race free is an NP-complete problem*

49

CS267 Lecture 7
49

MPI References

 The Standard itself:

 at http://www.mpi-forum.org

 All MPI official releases, in both postscript and

HTML

 Other information on Web:

 at http://www.mcs.anl.gov/mpi

 pointers to lots of stuff, including other talks and

tutorials, a FAQ, other MPI pages

Slide source: Bill Gropp, ANL

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/mpi

50

Books on

MPI

 Using MPI: Portable Parallel Programming

with the Message-Passing Interface (2nd edition),

by Gropp, Lusk, and Skjellum, MIT Press,

1999.

 Using MPI-2: Portable Parallel Programming

with the Message-Passing Interface, by Gropp,

Lusk, and Thakur, MIT Press, 1999.

 MPI: The Complete Reference - Vol 1 The MPI Core, by

Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT

Press, 1998.

 MPI: The Complete Reference - Vol 2 The MPI

Extensions, by Gropp, Huss-Lederman, Lumsdaine, Lusk,

Nitzberg, Saphir, and Snir, MIT Press, 1998.

 Designing and Building Parallel Programs, by Ian Foster,

Addison-Wesley, 1995.

 Parallel Programming with MPI, by Peter Pacheco,

Morgan-Kaufmann, 1997.

Slide source: Bill Gropp, ANL

51

Backup

 The key constructs of MPI

 MPI_Init() and MPI_Finalize()

 MPI_Comm_rize() and MPI_Comm_rank()

 MPI_Send() and MPI_Recv()

 MPI_Isend(), MPI_Irecv(), and MPI_Wait()

 MPI_Bcast(), MPI_Reduce(), MPI_Gather(), and MPI_Scatter()

 MPI_Barrier()

To do: I need a page for each one of these

similar to the one I have now for MPI_send

and MPI_Recv

52

Blocking Send and Receive

 MPI_Send performs a blocking send of the specified data (“count”

copies of type “datatype,” stored in “buf”) to the specified destination

(rank “dest” within communicator “comm”), with message ID “tag”

int MPI_Send (void* buf, int count,

 MPI_Datatype datatype, int dest,

 int tag, MPI_Comm comm)

int MPI_Recv (void* buf, int count,

 MPI_Datatype datatype, int source,

 int tag, MPI_Comm comm,

 MPI_Status* status)

 MPI_Recv performs a blocking receive of specified data from specified

source whose parameters match the send; information about transfer is

stored in “status”

By “blocking” we mean the functions return as soon as the buffer, “buf”, can be

safely used.

53

Non-Blocking Comminication

 Non-blocking operations return immediately and pass ‘‘request handles”
that can be waited on and queried

• MPI_ISEND(start, count, datatype, dest, tag, comm, request)

• MPI_IRECV(start, count, datatype, src, tag, comm, request)

• MPI_WAIT(request, status)

 One can also test without waiting using MPI_TEST

• MPI_TEST(request, flag, status)

 Anywhere you use MPI_Send or MPI_Recv, you can use the pair of
MPI_Isend/MPI_Wait or MPI_Irecv/MPI_Wait

Non-blocking operations are extremely important … they

allow you to overlap computation and communication.

54

Launching and closing MPI

 These functions “bracket” every MPI program

int MPI_Init (int* argc, char* argv[])

 Initializes the MPI library … called before any

other MPI functions.

 agrc and argv are the command line args passed

from main()

int MPI_Finalize (void)

 Frees memory allocated by the MPI library … close
every MPI program with a call to MPI_Finalize

55

Understanding the process group

 SPMD pattern: use the ID of each process and the size of the

process group to choose the data manipulated or the branching

through the program

int MPI_Comm_size (MPI_Comm comm, int* size)

 MPI_Comm, an opaque data type, a communication context. Default

context: MPI_COMM_WORLD (all processes)

 MPI_Comm_size returns the number of processes in the process

group associated with the communicator

int MPI_Comm_rank (MPI_Comm comm, int* rank)

 MPI_Comm, an opaque data type, a communication context. Default

context: MPI_COMM_WORLD (all processes)

 MPI_Comm_rank An integer ranging from 0 to “(num of procs)-1”

