

Music and Audio Applications

DAVID WESSEL

University of California
Department of Music
Center for New Music & Audio Technologies

The Parallel Computing Laboratory Department of Computer Science - UC Berkeley

App Areas

New Computer-Based Musical Instruments
Audio and Music Delivery Systems
Hearing Aids
Computer Aided Composition
Music Information Retrieval

Voices, Streams, Channels, Tracks, and Lines

Music's Low Hanging Fruit Ripe for Parallelism

Usually a mix of task parallelism and data parallelism

Computational Patterns in Music and Audio Applications Spectral Methods Dense and Sparse Linear Algebra Structured and Unstructured Grids Graphical Models Dynamic Programing Graph Algorithms Transcendental Functions

Structural Patterns

Pipe-and-Filter

Agent and Repository

Process Control

Sevent-based Invocation

Model-view Controller

Map Reduce

Arbtrary Static Task Graph

Ø Puppeteer

New Musical Instruments

Primary Design Criteria Bodily Engagement Musically Expressive and Inspiring Seasy to Play at the Entry Level BUT! Accepting of Lifelong Development of Virtuosity

Musical Instrumentation

Some numbers for real-time scheduling for audio, media, and music applications

Channel Synchronization < 10 micro-sec Audio Input to Output < 1 milli-sec Flams < 1 milli-sec Gesture to Audio < 10 milli-sec Audio-Visual Sych < 30 milli-sec Images (no flicker) < 50 milli-sec For audio jitter is forbidden. Video is more tolerant. High Bandwidth does not imply low latency

Voices, Streams, Channels, Tracks, and Lines Music's Low Hanging Fruit Ripe for Parallelism The new version of the **poly~** abstraction in Max/ MSP (version 5) assigns voices and collections of voices to multiple cores.

Open Sound Control (OSC)

* Open-ended, dynamic, URL-style symbolic naming scheme

* Symbolic and high-resolution numeric argument data

- * Pattern matching language to specify multiple recipients of a single message
- * High resolution time tags

* "Bundles" of messages whose effects must occur simultaneously

Many-Channel Audio Systems

Arrays of speakers and microphones Huge number of independent channels (Already 100s) Bandwidth requirements; Gigabit and beyond Low input to output latency Non-trivial computational requirements

Drum Track Extraction

Non-negative Matrix Factorization

- NMF source separation is accomplished using an iterative gradient-based solver
 - Our aim is to factorize a positive matrix X (MxN) into two positive matrices A (MxK) and S (KxN), where K is much smaller than M and N
 - For source separation on a spectrogram matrix: M is the number of frequency components, N is the number of frames (in time), and K is the number of sources

Pattern Mining Overview

	Spectral Feature Extraction	NMF	Component Feature Extraction	SVM Classifier	Audio Resynthesis
Structural Pattern	Pipe-and-Filter	Bulk Iterative, Pipe-and-Filter	Pipe-and-Filter	Pipe-and-Filter	Pipe-and-Filter
Computational Pattern	FFT, Sparse Linear Algebra, Structured Grid	Dense Linear Algebra, Graph Algorithms	FFT, Structured Grid	Dense Linear Algebra	FFT, Dense Linear Algebra
Algorithm Pattern	Data Parallelism, Geometric Decomposition	Data Parallelism, Geometric Decomposition, Recursive Splitting	Data Parallelism, Geometric Decomposition	Data Parallel, Geometric Decomposition	Data Parallelism, Geometric Decomposition
Implementation Pattern	Strict Data Parallel, SPMD	Strict Data Parallel, Distributed Array, SPMD	Strict Data Parallel, SPMD	SPMD, Distributed Array	Strict Data Parallel, Distributed Array
Execution Pattern	SIMD	SIMD, Collective Synchronization	SIMD	SIMD	SIMD, Collective Synchronization

Special Thanks

Meyer Sound Laboratories - Berkeley

Rimas Avizienis and Adrian Freed for their work on the slab and connectivity processing.

Andy Schmeder of CNMAT for numerous discussions.

Eric Battenberg for the OpenMP and CUDA implementations of Non-negtive Matrix Factorization

Resources

For Max/MSP/Jitter: http://www.cycling74.com/downloads/max5 For video demo of SLABS in action: http://www.youtube.com/watch?v=q_mtCZqNOMs http://www.youtube.com/watch? v=S1R8h_CU7xQ&feature=related For Open Sound Control (OSC) 1.1 http://cnmat.berkeley.edu/user/adrian_freed/blog/ 2008/10/06/open_sound_control_1_1_specification

Thanks for your attention

www.cnmat.berkeley.edu

wessel@cnmat.berkeley.edu