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ABSTRACT
Atomicity is an important specification that enables programmers
to understand atomic blocks of code in a multi-threaded program
as if they are sequential. This significantly simplifies the pro-
grammer’s job to reason about correctness. Several modern multi-
threaded programming languages provide no built-in support to
ensure atomicity; instead they rely on the fact that programmers
would use locks properly in order to guarantee that atomic code
blocks are indeed atomic. However, improper use of locks can
sometimes fail to ensure atomicity. Therefore, we need tools that
can check atomicity properties of lock-based code automatically.

We propose a randomized dynamic analysis technique to detect
a special, but important, class of atomicity violations that are often
found in real-world programs. Specifically, our technique modifies
the existing Java thread scheduler behavior to create atomicity vio-
lations with high probability. Our approach has several advantages
over existing dynamic analysis tools. First, we can create a real
atomicity violation and see if an exception can be thrown. Second,
we can replay an atomicity violating execution by simply using
the same seed for random number generation—we do not need to
record the execution. Third, we give no false warnings unlike exist-
ing dynamic atomicity checking techniques. We have implemented
the technique in a prototype tool for Java and have experimented
on a number of large multi-threaded Java programs and libraries.
We report a number of previously known and unknown bugs and
atomicity violations in these Java programs.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification;
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Languages, Algorithms, Verification
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1. INTRODUCTION
Multi-threaded concurrent programs often exhibit wrong behav-

iors due to unintended interference among multiple threads. Such
concurrency bugs are often difficult to find because they typically
happen under very specific thread interleavings. Much of the pre-
vious work on finding bugs in multi-threaded programs focused on
data-race detection. A data-race occurs when two threads concur-
rently access a memory location and at least one of the accesses is a
write. Both dynamic [11, 1, 10, 38, 47, 9, 2, 35, 40] and static [43,
19, 4, 5, 20, 25, 16, 36, 34] techniques have been developed to
detect and predict data races in multi-threaded programs.

Unfortunately, the absence of data races is not sufficient to en-
sure that a program is free of errors. For example, in the following
Java implementation of Consumer,

public class Consumer {
private LinkedList buffer;

public synchronized void consume(){
if(!buffer.isEmpty()){
// another consumer thread can make the buffer
// empty causing an atomicity violation
Object data = buffer.remove();
System.out.println(((Data)data).value);

}
}

}

public class LinkedList ... {
public synchronized boolean isEmpty(){ ... }
// Retrieves and removes the head of this queue
public synchronized Object remove(){ ... }
...

}

all accesses to the object buffer and its fields are protected by
the implicit lock associated with the object. The implementation
is, therefore, free of data races. However, the consume method,
which checks if the buffer is empty, retrieves and removes the
first element from the buffer, and prints the element’s value, is
not atomic. This is because, in between checking if the buffer
is empty and retrieving the first element from the buffer, another
consumer thread can make the buffer empty, which will lead to
the retrieval of a null object by the consumer. This will raise an
exception when the consumer tries to print the data.

A stronger non-interference property of multi-threaded programs
that helps to avoid the above problem is called atomicity. A block
of code in a multi-threaded program is atomic if for every possi-
ble interleaved execution of the program there exists an equivalent
execution with the same overall behavior where the atomic block
is executed serially, that is, the execution of the atomic block is
not interleaved with actions of other threads. Therefore, if a code
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block is atomic, the programmer can assume that the execution of
the code block by a thread cannot be interfered by any other thread;
this helps programmers to reason about atomic code blocks sequen-
tially. For example, in the above code if we can ensure that the
method consume is atomic, then the execution of consume can-
not be interfered by any other thread and no exceptions will be
raised.

In most modern multi-threaded programming languages, atom-
icity is indirectly achieved through the use of locks. However, if
locks are used incorrectly, a code block may not be ensured to be
atomic. The above program is an example of this problem. Our
experiments show many examples of atomicity violations in real-
world programs that use locks.

In recent years, a number of techniques have been proposed and
applied to check atomicity properties. Such techniques include dy-
namic analysis [48, 21, 49], type systems [32, 23, 24], and model-
checking [28, 18]. A problem with type based atomicity check-
ing is that it requires the programmer to write complex annotations
that involve the specification of which lock protects which vari-
able and therefore, makes programming harder. Model-checking
based techniques, being exhaustive in nature, do not scale for large
real-world programs. The dynamic approaches could report many
false warnings of atomicity violations. For example, the Atom-
izer tool [21] reports 97 atomicity violations in experiments out of
which only 6 are real atomicity violations. Moreover, being impre-
cise in nature, most of the dynamic tools require manual inspec-
tion to see if an atomicity violation is real or not. Another bigger
problem with these tools is that they do not create a concrete con-
current execution exhibiting an atomicity violation. Nevertheless,
these tools are very effective in finding atomicity violations because
they can predict atomicity violations that could potentially happen
during a real execution—for such a prediction, they need to see
only one concurrent execution.

We propose a new dynamic technique, called ATOMFUZZER, for
precisely finding a particular class of atomicity violations in multi-
threaded programs. Specifically, we are interested in finding an
atomicity violating locking pattern where a thread p acquires and
releases a lock L while inside an atomic block. Another thread p′

subsequently acquires and releases the same lock L. Thread p then
again acquires the lock L while inside the same atomic block. The
preceding example can exhibit this pattern if the method consume
is declared atomic and if a thread executes the remove method
between the execution of the isEmpty and remove methods of
consume by another thread. We focus on this particular pattern
of atomicity violation because it is a very common bug pattern
in multi-threaded Java programs and our experiments support this
fact. Moreover, we have found that most of the other atomicity vi-
olation patterns are due to data races and can be caught using data
race detection techniques. A technical explanation of this claim is
provided later in the paper.

ATOMFUZZER works as follows. We assume that the user has
indicated which code blocks are atomic using annotations. ATOM-
FUZZER then dynamically checks if the annotated code blocks are
indeed atomic. Specifically, ATOMFUZZER performs a random ex-
ecution of a multi-threaded program by choosing a random thread
to execute at every program state. However, unlike simple ran-
dom testing, ATOMFUZZER looks for the atomicity violation pat-
tern. Whenever ATOMFUZZER discovers that a thread p is inside
an atomic block and is about to acquire a lock L that has been pre-
viously acquired and released by the same thread inside the same
atomic block, ATOMFUZZER warns that there could be a poten-
tial atomicity violation. Such a warning would be given by any of
the existing atomicity violation tools, such as Atomizer. ATOM-

FUZZER then tries to check if the warning could be a real atomicity
violation by pausing the execution of the thread p and continuing
the execution of other threads. If any other thread acquires and re-
leases the lock L while the thread p is waiting, ATOMFUZZER flags
a real atomicity violation error because it has created a real atom-
icity violation scenario. In summary, ATOMFUZZER actively con-
trols a randomized thread scheduler of a multi-threaded program to
create real atomicity violations.

We have implemented ATOMFUZZER in a prototype tool for
Java. The target program can be annotated (using comments) to
indicate that a block of code is atomic. ATOMFUZZER also allows
a heuristic to decide which blocks of code should be checked for
atomicity in the absence of user provided annotations. The heuristic
assumes that all synchronized code blocks and synchronized meth-
ods are intended to be atomic. The same heuristic has been previ-
ously used by the dynamic atomicity checking tool Atomizer [21].
We have applied ATOMFUZZER to a number of large benchmarks
having a total of around 600K lines of code. In all these bench-
marks, due to lack of user-provided annotations, we used the above
mentioned heuristic to decide which code blocks should be con-
sidered atomic. The results of our experiments demonstrate that
ATOMFUZZER can detect previously unknown atomicity violations
in mature real-world programs including Sun’s JDK 1.4.2. For
21 synchronized blocks, ATOMFUZZER found executions showing
that these blocks were not atomic. In 14 of these cases, the meth-
ods/blocks were intended to be atomic and the reported atomicity
violations were real bugs. All of these bugs resulted in unchecked
exceptions when the intended atomicity was violated, making it
simple-to-determine that they were not false positives. The remain-
ing 7 of these violations are benign because they do not violate the
correctness property of the programs. Our results show that the
above mentioned heuristic is a reasonable assumption for finding
atomicity violation related bugs in 67% of the cases and lead to
false error reports in the remaining cases.
We make the following contributions in this paper.

• We identify a special atomicity violation pattern that can be
found efficiently and accounts for many atomicity violation
related bugs in real-world programs.

• We propose a randomized dynamic analysis technique that
can create these atomicity violations.

• We have implemented ATOMFUZZER in Java and applied it
to real-world programs. We have discovered previously un-
known atomicity violation bugs in these programs.

The features of ATOMFUZZER are listed below.

• Classifies real atomicity violations from false alarms.
ATOMFUZZER actively controls a randomized thread sched-
uler so that real atomicity violation scenarios get created with
high probability. (In Section 3.2, we explain our claim about
high probability through an example and empirically vali-
date the claim in Section 5.2. In general, the high probability
claim may not hold for some programs.) This enables the
user of ATOMFUZZER to automatically separate real atom-
icity violations from false warnings, which is otherwise done
through manual inspection.

• Inexpensive replay of a concurrent execution exhibiting
a real atomicity violation. ATOMFUZZER provides a con-
crete concurrent execution that exhibits a real atomicity vi-
olation. Moreover, it allows the user to replay the concrete
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execution by setting the same seed for random number gener-
ation. Note that an exact replay is possible if we can capture
all sources of non-determinism (e.g. data inputs) other than
scheduler non-determinism and provide deterministic values
for such non-determinism. Once we have removed all non-
scheduler non-determinism, the ATOMFUZZER algorithm is
deterministic if we fix a seed for the random number genera-
tor used by ATOMFUZZER.

• Demonstrates if an atomicity violation can cause an ex-
ception or a crash. ATOMFUZZER creates an actual atomic-
ity violation scenario. This enables us to discover if the atom-
icity violation could cause a real exception in a program. For
code blocks that are assumed to be atomic by the use of our
heuristic, we can confirm that they were actually intended
to be atomic if we can cause an exception or a crash when
atomicity is violated.

• No false atomicity violation reports. ATOMFUZZER gives
no false reports about atomicity violations because it actually
creates an atomicity violation scenario provided that the user
annotates the atomic blocks.

• Embarrassingly parallel. Since different invocations of
ATOMFUZZER are independent1 of each other, the perfor-
mance of ATOMFUZZER can be increased linearly with the
number of processors or cores.

Despite the various advantages of ATOMFUZZER, it has some
limitations. First, being dynamic in nature, ATOMFUZZER cannot
detect all atomicity violations in a concurrent program—it detects
an atomicity violation if the violation can be produced with the
given test harness for some thread schedule. This can be alleviated
by combining ATOMFUZZER with a symbolic execution technique.
Second, being random in nature, ATOMFUZZER may not be able
to create all atomicity violations that could happen with a given
input. This problem can be alleviated by running ATOMFUZZER
many times. Third, in the absence of user-provided atomicity an-
notations, ATOMFUZZER has to rely on a heuristic to decide which
code blocks are atomic. Therefore, some of the atomicity violation
errors that are reported by ATOMFUZZER may not be bugs because
the heuristic may not match with the user intentions.

2. ALGORITHM
In this section, we define atomicity formally using a general and

simple model of a concurrent system. We then describe the ATOM-
FUZZER algorithm using this model.

2.1 Background Definitions
We consider a concurrent system composed of a finite set of

threads. Each thread executes a sequence of statements and com-
municates with other threads through shared objects. In a concur-
rent system, we assume that each thread terminates after the execu-
tion of a finite number of statements. At any point of execution, a
concurrent system is in a state. Let S be the set of states that can
be exhibited by a concurrent system starting from the initial state
s0. A concurrent system evolves by transitioning from one state to
another state. Let T be the set of all transitions in a system. We say
s

t−→ s′ to denote that the execution of the transition t changes the
1Note that the algorithm of ATOMFUZZER is not parallel, but for
the purpose of testing we have to invoke ATOMFUZZER several
times with different random seeds. All such invocation are inde-
pendent of each other.

Algorithm 1 Algorithm SIMPLEFUZZER

1: Inputs: the initial state s0
2: s := s0
3: while Enabled(s) != ∅ do
4: t := a random transition in Enabled(s)
5: s := Execute(s, t)
6: end while
7: if Alive(s) != ∅ then
8: print “ERROR: actual deadlock found”
9: end if

state s to s′. A transition is always caused by the execution of a
statement by a thread.
Enabled(s) denotes the set of transitions that are enabled in

the state s. Alive(s) denotes the set of threads whose executions
have not terminated in the state s. A state s is in deadlock, if the
set of enabled transitions at s (i.e. Enabled(s)) is empty and the
set of threads that are alive (i.e. Alive(s)) is non-empty.

We next describe a simple randomized execution algorithm (see
Algorithm 1) to clarify the definitions introduced above. Starting
from the initial state s0, this algorithm, at every state, randomly
picks a transition enabled at the state and executes it. The algo-
rithm terminates when the system reaches a state that has no en-
abled transition. At termination, if there is at least one thread that
is alive, the algorithm reports a deadlock.

Given the above model of concurrent programs, we define a
happens-before relation which is crucial to formally understand
atomicity and to describe our ATOMFUZZER algorithm. Central
to the definition of the happens-before relation is the notion of in-
dependence of transitions.

DEFINITION 1 (INDEPENDENT TRANSITIONS). If two tran-
sitions in a concurrent system do not interact with each other, then
we call them independent.

For example, a transition denoting the acquire of a lock l1 by a
thread p1 is independent of a transition denoting the acquire of a
lock l2 by another thread p2, if l1 and l2 are different locks.

DEFINITION 2 (DEPENDENT TRANSITIONS). Two transi-
tions are said to be dependent, if they are not independent.

Transitions from the same thread are always dependent on each
other. Similarly, the acquire or release of a lock by one thread is
dependent on the acquire or release of the same lock by another
thread. Two accesses (i.e. read or write) of a memory location are
dependent if at least one of the accesses is a write.

The execution of a concurrent system can be represented by a
sequence of transitions. Specifically, τ = t1t2 . . . tn is a transition
sequence if there exists states s1, s2, . . . , sn+1 such that s1 is the
initial state and

s1
t1−→ s2

t2−→ . . .
tn−→ sn+1

The happens-before relation # for a transition sequence τ =
t1t2 . . . tn is defined as the smallest relation such that

1. if ti and tj are dependent and 1 ≤ i ≤ j ≤ n, then ti # tj ,
and

2. # is transitively closed.

Thus # is a partial order relation.
In this paper, we use a robust notion of atomicity, called causal

atomicity, introduced by Farzan et al. [17].
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DEFINITION 3 (CAUSAL ATOMICITY). A block of code B of
a thread is causally atomic if there is no execution where a tran-
sition of another thread happens-after the beginning of B and
happens-before another transition that is within the same block B.

The definition of causal atomicity implies that an atomicity vi-
olation occurs in an execution if there are three transitions t1, t2,
and t3 such that

1. t1 and t3 are transitions of the same thread and are within the
same atomic block,

2. t2 is a transition of another thread, and

3. t1 happens-before t2 and t2 happens before t3.

The goal of ATOMFUZZER is to create such atomicity violations.

2.2 The randomized active atomicity violation
detection algorithm

In this work, we are interested in detecting a special class of
causal atomicity violations where the transitions t1, t2, and t3 in-
volved in the violation are acquires of the same lock l. There are
three reasons for focusing on this particular pattern. First, our ex-
periments demonstrate that this is a very common atomicity viola-
tion pattern and real-world programs often show this buggy pattern.
Second, since we focus on lock acquires only, the runtime overhead
of ATOMFUZZER is pretty low compared to other tools. Third, we
believe that this pattern does not capture some other common situa-
tions where t1, t2, and t3 are accesses to the same memory location.
However, we argue that a data race over the memory location im-
plies the remaining patterns and can be detected by a race detector.
Assume that t1, t2, and t3 are accesses to the same memory loca-
tion m. If these accesses are not in data race, then each of these
accesses is surrounded by a common lock, say l. Let t′1, t′2, and t′3
are transitions denoting the acquire of the lock l before the transi-
tions t1, t2, and t3, respectively. The transitions t′1, t′2, and t′3 then
form the above mentioned atomicity violation pattern. Therefore,
if there is no race among the transitions t1, t2, and t3, then the re-
sulting atomicity violation pattern is the same as the pattern we are
interested in.

In ATOMFUZZER, we only consider three kinds of transitions as
described below.

• AtomicEnter(p). The execution of an
AtomicEnter(p) transition by a thread p indicates
that the thread has entered an atomic block.

• AtomicExit(p). The execution of an AtomicExit(p)
transition by a thread p indicates that the thread has exited an
atomic block.

• ACQUIRE(p, L). On the execution of an ACQUIRE(p, L)
transition, thread p acquires the lock L.

Normally, we will assume that the AtomicEnter(p) and
AtomicExit(p) transitions will be introduced by programmers
to annotate the entry and exit of atomic blocks in a concurrent sys-
tem.

In Java, locks are re-entrant, i.e., a thread may re-acquire a
lock it already holds. In our algorithm, we ignore a transition
ACQUIRE(p, L) if p re-acquires a lock L.2

2This is implemented by associating a usage counter with a lock
which is incremented whenever a thread acquires or re-acquires
the lock and decremented whenever a thread releases the lock. An
ACQUIRE(p, L) is considered whenever the thread p acquires or
re-acquires the lock L and the usage counter associated with l is
incremented from 0 to 1.

Algorithm 2 Algorithm ATOMFUZZER

1: Inputs: the initial state s0
2: s := s0
3: paused := alreadyAcquired := insideAtomic := ∅
4: while Enabled(s) != ∅ do
5: t := a random transition in Enabled(s) such that

∀p, L.(p, L, t) !∈ paused
6: if t = AtomicEnter (p) then
7: s := Execute(s, t)
8: add p to insideAtomic
9: else if t =AtomicExit(p) then

10: s := Execute(s, t)
11: remove p from insideAtomic
12: remove ∀L.(p, L) from alreadyAcquired
13: else if t =ACQUIRE(p, L) then
14: if p ∈insideAtomic then
15: if (p, L) ∈ alreadyAcquired then
16: add (p, L, t) in paused with probability q // q is 0.5
17: print “WARNING: Atomicity violation possible”
18: else
19: add (p, L) to alreadyAcquired
20: s := Execute(s, t)
21: end if
22: else
23: s := Execute(s, t)
24: end if
25: if ∃p′, t′.(p′, L, t′) ∈ paused and p != p′ then
26: remove (p′, L, t′) from paused
27: print “ERROR: Atomicity violation detected”
28: end if
29: end if
30: if |paused| = |Enabled(s)| then
31: remove a random element from paused
32: end if
33: end while
34: if Alive(s) != ∅ then
35: print “ERROR: actual deadlock found”
36: end if

The ATOMFUZZER algorithm performs random execution as in
the simple randomized algorithm in Algorithm 1. However, un-
like the simple algorithm, ATOMFUZZER looks for the atomicity
violation pattern described above. In particular, whenever ATOM-
FUZZER finds that a thread p is inside an atomic block and is about
to acquire a lock L that has been previously acquired and released
inside the same atomic block, ATOMFUZZER issues an atomicity
violation warning. Such a warning would be given by any other
static or dynamic atomicity checking tool. However, such a warn-
ing can be spurious unless one can show that some other thread can
acquire and release the same lock L immediately before the thread
p acquires the lock. ATOMFUZZER tries to create this scenario
by changing the default scheduler behavior. Specifically, ATOM-
FUZZER pauses the execution of the thread p just before it acquires
the lock L and allows the other threads to execute. If at any point
in the execution, ATOMFUZZER discovers that some other thread
has acquired the lock L, then ATOMFUZZER flags an atomicity vi-
olation error because it has created a scenario showing an atomicity
violation.

The algorithm is formally described in Algorithm 2. The algo-
rithm can produce three kinds of outputs:

1. Warnings: These are potential atomicity violations. Exist-
ing tools, such as Atomizer, already produce these warnings.
We do not show these warnings to the user and we only use
them for experimental evaluation.

2. Errors: These are real atomicity violations, i.e. ATOM-
FUZZER has actually created an execution showing the vi-
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olations. Sometimes atomicity violations may not result in
bugs because they are benign. Moreover, if we are using the
heuristic, then an atomicity violation may not result in a bug
because the heuristic may not match with the user intention.

3. Bugs/Exceptions: These are uncaught exceptions or pro-
gram crashes that result due to real atomicity violations. If
we are using the heuristic, then they indicate that the found
atomicity violation is a bug.

In the algorithm we maintain three sets: paused to maintain in-
formation about the threads that we have paused in an effort to
create an atomicity violation, insideAtomic to keep track of threads
that are already inside an atomic block, and alreadyAcquired to
keep track of locks that a thread has already acquired and released
while inside its current atomic block. These sets are initially empty.

At every state ATOMFUZZER picks a random enabled transition
t, such that the transition has not been paused for the purpose of
creating an atomicity violation (see line 5). If a thread p executes
AtomicEnter(p) (see lines 6–8), then we add p to the set insid-
eAtomic to record the fact that the thread is now inside an atomic
block. Similarly, if a thread p executes AtomicExit(p) (see lines
9–12), then we remove p from the set insideAtomic to indicate the
fact that the thread is no longer inside an atomic block. We also
clear all entries corresponding to the thread p in the set alreadyAc-
quired.

The key component of the ATOMFUZZER algorithm kicks in if
the randomly picked transition is ACQUIRE(p, L). We can then
have four cases.

• Case 1: (lines 14–17) If the thread p is already inside an
atomic block and if (p, L) is in the set alreadyAcquired, then
we know that thread p has previously acquired and released
the lock L while inside the atomic block. Therefore, we raise
an atomicity violation warning following Lipton’s reduction
algorithm [32]. ATOMFUZZER also puts the tuple (p, L, t)
to the set paused with probability q to indicate that ATOM-
FUZZER wants to see if some thread can acquire and release
L while p is paused and violate p’s atomicity condition.

• Case 2: (lines 18–20) If the thread p is already inside an
atomic block and if (p, L) is not in the set alreadyAcquired,
then we know that thread p has not previously acquired and
released the lock L while inside the atomic block. Therefore,
there is no possibility of an atomicity violation at the current
point. We add the pair (p, L) in the set alreadyAcquired to
indicate that thread p should now look for the atomicity vio-
lation pattern over the lock L.

• Case 3: (lines 22–23) If thread p is not inside an atomic
block, then simply execute t.

• Case 4: (lines 25–28) In all the above three cases, ATOM-
FUZZER checks if the current lock acquire can conflict with
some other lock acquire that has been paused at line 16.
ATOMFUZZER then flags an atomicity violation error.

Note that if ATOMFUZZER keeps on pausing threads without dis-
covering any atomicity violation errors, then it may sometimes end
up pausing all threads. If this ever happens, ATOMFUZZER breaks
the deadlock by removing a random element from the set paused
(see lines 30–32.)

1: class Account {
2: int balance = 100;
3: public synchronized getBalance() {
4: return balance;
5: }
6: public synchronized withdraw(int amount) {
7: balance = balance - amount;
8: assert (balance >= 0);
9: }
10:}

11: Initially: Account acnt = new Account();

Thread T1:
12: atomic {
13: if (acnt.getBalance()>=70)
14: {
15: acnt.withdraw(70);
16: }
17: }

Thread T2:
18: atomic {
19: if (acnt.getBalance()>=70)
20: {
21: acnt.withdraw(70);
22: }
23: }

Figure 1: A program with an atomicity violation

3. ADVANTAGES OF ATOMFUZZER

3.1 Example 1 illustrating ATOMFUZZER

Consider the two-threaded program in Figure 1. The program
defines a Java class Account that has two synchronized methods
getBalance and withdraw. For simplicity of description, in-
stead of defining two threads explicitly, we simply show the code
that the two threads execute. A variable acnt is initialized with a
new account. Then each thread withdraws an amount of 70 if the
balance is greater than or equal to 70. There is no data race in the
program because all accesses to the only shared field balance
are protected by the same lock acnt. The code executed by each
thread is required to be atomic. However, due to the lack of proper
synchronization, the atomicity requirement is violated. Specifi-
cally, if we execute each thread serially, then the final balance be-
comes 30 and the assertion at line 8 is never violated. However, in
the following multi-threaded execution
T1:12, T1:13, T1:14, T2:18, T2:19, T2:20,
T1:15, T1:16, T1:17, T2:21, T2:22, T2:23

an atomicity violation takes place. This is because T1 enters an
atomic block at line 12; it then acquires and releases the lock acnt
at line 13. Before T1 acquires the same lock acnt at line 15, T2
acquires and releases the lock acnt at line 19. This creates an
atomicity violating locking pattern. Due to this atomicity viola-
tion, the invariant that “an amount can only be deducted if there is
sufficient balance in the account” is violated and this results in the
failure of the assertion at line 8 by T2.

We now illustrate the execution of ATOMFUZZER using the ex-
ample in Figure 1. ATOMFUZZER starts executing the program by
randomly picking one thread at every state and executing its next
statement. After a few steps, either thread T1 reaches the statement
at line 15 with probability 0.5 or thread T2 reaches the statement at
line 21 with probability 0.5. There could be four cases depending
on what T1 and T2 has executed so far. Consider the case in which

139



11: Initially: Account acnt = new Account();

Thread T1:

12: atomic {
13: if (acnt.getBalance()>=70)
14: {
15: acnt.withdraw(70);
16: }
17: }

Thread T2:

18: f1();
19: f2();
20: f3();
21: f4();
22: f5();
23: f6();
24: atomic {
25: if (acnt.getBalance()>=70)
26: {
27: acnt.withdraw(70);
28: }
29: }

Figure 2: Another program with a rare atomicity violation

T1 reaches line 15 before T2 reaches line 21 and T2 is at line 18.
At this state, ATOMFUZZER will pause the execution of T1 because
it has identified that there is a potential for atomicity violation. The
execution of T2will continue as the other thread is paused. As soon
as T2 acquires the lock acnt at line 19, ATOMFUZZER will detect
that a real atomicity violation has taken place and it will resume the
execution of thread T1. The rest of the execution will violate the
assertion at line 8.

The remaining cases are the following. (1) T1 has reached line
15 and T2 has reached line 20. (2) T2 has reached line 21 and T1
has reached line 12. (3) T2 has reached line 21 and T1 has reached
line 14. In all the three cases ATOMFUZZER will create a real atom-
icity violation scenario. Therefore, in this example, ATOMFUZZER
will create a real atomicity violation with probability 1. Note that
if we perform pure random scheduling of the threads (see Algo-
rithm 1), a real atomicity violation will be created with probability
0.5. This is because, in pure random scheduling, there is a 0.5
probability that each of the threads gets executed serially.

3.2 Example 2 illustrating that ATOMFUZZER

can detect atomicity violations with high
probability

The example in the previous section may not be convincing
enough to establish the fact that ATOMFUZZER is better than the
pure random scheduler to create atomicity violation scenarios with
high probability. Therefore, to illustrate our claim that ATOM-
FUZZER can detect atomicity violations with high probability in
many cases, we modify the example in Figure 1 slightly. The mod-
ified code is shown in Figure 2.

The modified example introduces a number of statements in T2
to ensure that the atomic block in T2 gets executed after the exe-
cution of a large number of statements and the atomic block in T1
gets executed at the beginning. This snippet represents a pattern in
real-world programs.

A pure random thread scheduler needs to generate the following
executions
T1:12, T1:13, T1:14, T2:18, T2:19, T2:20,

11: Initially: Account acnt = new Account();
12: Object lock = new Object();

Thread T1:

13: atomic {
14: synchronized (lock) {
15: if (acnt.getBalance()>=70)
16: {
17: acnt.withdraw(70);
18: }
19: }
20: }

Thread T2:

21: atomic {
22: synchronized (lock) {
23: if (acnt.getBalance()>=70)
24: {
25: acnt.withdraw(70);
26: }
27: }
28: }

Figure 3: Another program with no atomicity violation

T2:21, T2:22, T2:23, T2:24, T2:25, T2:26,
T1:15, T1:16, T1:17, T2:27, T2:28, T2:29

or
T2:18, T2:19, T2:20, T2:21, T2:22, T2:23,
T2:24, T2:25, T2:26, T1:12, T1:13, T1:14,
T2:27, T2:28, T2:29,T1:15, T1:16, T1:17

to create a real atomicity violation scenario. However, the prob-
ability of generating these executions is very low (i.e. less than
0.05).

However, it can be shown by similar reasoning as in the previous
example that ATOMFUZZER will create a real atomicity violation
scenario with probability 1 for this case.

3.3 Example 3 illustrating that ATOMFUZZER

gives no false positives
In order to demonstrate that ATOMFUZZER gives no atomicity

violation errors where an existing dynamic analysis tool [21] can
give false warnings, we modify the example in Figure 1 again.
The modified code is shown in Figure 3. In the modified code,
we add an extra lock to protect the code of each thread. Due to
the lock, each thread executes its code serially. Therefore, un-
der no circumstances ATOMFUZZER would be able to create a real
atomicity violation scenario. However, a tool like Atomizer will
give an atomicity violation warning at line 17 and line 25. This is
because Atomizer classifies any lock acquire as a right-mover (R)
and any lock release as a left-mover (L) [32]. Therefore, from the
execution of T1, Atomizer will infer the execution exhibits the fol-
lowing sequence RRLRLL, which violates atomicity according to
Lipton’s reduction algorithm [32].

3.4 Example 4 illustrating incompleteness of
ATOMFUZZER

In order to demonstrate that ATOMFUZZER may not give an
atomicity violation error when there is one, we modify the example
in Figure 1 again. The modified code is shown in Figure 4. In the
modified code, we introduce a user input c. If the value of input
is ’y’, the atomic block in Thread T2 is executed. Therefore,
if ATOMFUZZER is run with c=’n’, then ATOMFUZZER will not
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11: Initially: Account acnt = new Account();

Thread T1:

12: atomic {
13: if (acnt.getBalance()>=70)
14: {
15: acnt.withdraw(70);
16: }
17: }

Thread T2:
18: char c = read_user_input();
19: if (c == ’y’) {
20: atomic {
21: if (acnt.getBalance()>=70)
22: {
23: acnt.withdraw(70);
24: }
25: }
26: }

Figure 4: Another program with an atomicity violation. The
program is tested on input c=’n’

be able to create the atomicity violation error scenario. This shows
that ATOMFUZZER cannot catch all atomicity violations because
the provided test suite may not be sufficient to create them.

4. IMPLEMENTATION
We have implemented the ATOMFUZZER algorithm for Java in

a prototype tool. The implementation is part of the CALFUZZER
tool set [39, 40]. The implementation allows one to specify a code
block as atomic.

ATOMFUZZER instruments Java bytecode to observe relevant
transitions and to control the thread scheduler. Bytecode instru-
mentation allows us to analyze any Java program for which the
source code is not available. We use the SOOT compiler frame-
work [45] to perform the instrumentation. The instrumentation in-
serts various methods provided by ATOMFUZZER inside Java pro-
grams. These methods implement the ATOMFUZZER algorithm.
The instrumentor of ATOMFUZZER modifies all bytecode associ-
ated with a Java program including the libraries it uses, except for
the classes that are used to implement ATOMFUZZER. This is be-
cause ATOMFUZZER runs in the same memory space as the pro-
gram under analysis. ATOMFUZZER cannot track lock acquires
and releases by native code or uninstrumented Java libraries. For
such reasons, there is a possibility that ATOMFUZZER can go into
a deadlock if there are synchronization operations inside uninstru-
mented classes or native code. To avoid such scenarios, ATOM-
FUZZER runs a monitor thread that periodically polls to check if
there is any deadlock. If the monitor discovers a deadlock, it then
removes one thread from the set paused.

ATOMFUZZER can also escape from livelocks. Livelocks happen
when all threads of the program end up in the paused set, except
for one thread that does something in a loop without synchroniz-
ing with other threads. We observed such livelocks in a couple of
our benchmarks. Even in the presence of livelocks, these bench-
marks work correctly because the correctness of these benchmarks
assumes that the underlying Java thread scheduler is fair. In order to
avoid livelocks, ATOMFUZZER creates a monitor thread that peri-
odically removes those threads from the paused set that are waiting
for a long time.

In order to control the default thread schedule, i.e. to pause

and wake up a thread on demand, ATOMFUZZER associates a
semaphore with every thread. If a thread needs to pause, it tries
to acquire the semaphore associated with it. A paused thread can
be woken up by some other thread by releasing the semaphore
associated with the thread. The use of semaphores helps ATOM-
FUZZER to control the Java thread schedule without modifying the
JVM scheduler.

In [33], it has been shown that it is sufficient to perform thread
switches before synchronization operations, provided that the al-
gorithm tracks all data races. ATOMFUZZER, therefore, only per-
forms random thread switches before synchronization operations.
This particular restriction on thread switches keeps our implemen-
tation fast. Since ATOMFUZZER only tracks synchronization op-
erations, the runtime overhead of ATOMFUZZER is significantly
lower than that of other existing dynamic atomicity checking tools.

5. EMPIRICAL EVALUATION

5.1 Benchmark Programs
We have evaluated ATOMFUZZER on a variety of Java multi-

threaded programs. The benchmark includes both closed programs
and open libraries that require test drivers to close them. We ran
our experiments on a laptop with a 2.0 GHz Intel Core 2 Duo pro-
cessor and 2GB RAM. We considered the following closed bench-
mark programs in our experiments: cache4j, a fast thread-safe
implementation of a cache for Java objects, sor, a successive over-
relaxation benchmark from ETH [47], hedc, a web-crawler ap-
plication kernel also developed at ETH [47], weblech, a multi-
threaded web site download and mirror tool, jspider, a highly
configurable and customizable Web Spider engine, and jigsaw
2.2.6, W3C’s leading-edge Web server platform. The total lines
of code in these benchmark programs is approximately 600,000.

The open programs consist of several synchronized Collec-
tion classes provided with Sun’s JDK, such as Vector in JDK
1.1, ArrayList, LinkedList, HashSet, and TreeSet in
JDK 1.4.2. Most of these classes (except the Vector class)
are not synchronized by default. The java.util package pro-
vides special functions Collections.synchronizedList
and Collections.synchronizedSet to make the above
classes synchronized. We considered two other widely known li-
braries: the Apache Commons-Collections and the Google Collec-
tions Library. In order to close the Collection classes, we wrote a
multi-threaded test driver for each such class. A test driver starts
by creating two empty objects of the class. The test driver also cre-
ates and starts a set of threads, where each thread executes differ-
ent methods on either of the two objects concurrently. We created
two objects because some of the methods, such as containsAll,
take as an argument an object of the same type. For such methods,
we call the method on one object and pass the other object as an
argument.

Since we do not have atomicity annotations in our bench-
mark programs, we use the heuristic that any code block that is
synchronized is atomic, in our experiments. The same assump-
tion has been made in the Atomizer tool [21]. A rationale behind
this assumption is that often programmers surround a code block
with synchronized to achieve mutual exclusion, i.e. to ensure
that the data inside the code block is accessed without interference
from other threads. In other words, programmers often assume that
a synchronized code block will behave atomically. Note that this
assumption might give some false warnings if a synchronized block
need not be atomic in a program. However, this does not affect our
general claim that ATOMFUZZER gives no false warnings—if the
programmer properly annotates atomic blocks, then we get no false
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Program name Lines of Avg. Runtime in sec. Slowdown # Warnings # Errors # Bugs Probability of # Previously
code Normal AF reported confirmed detecting error known

StringBuffer 1320 0.17 0.21 1.23 1 1 1 0.78 1
Vector 709 0.13 0.13 1.00 0 0 0 - 0
ArrayList 5,866 0.14 0.24 1.71 2 2 2 0.97 0
LinkedList 5,979 0.16 0.24 1.50 2 2 2 0.99 0
HashSet 7,086 0.14 0.24 1.71 2 2 2 0.98 0
TreeSet 7,532 0.15 0.24 1.60 2 2 2 0.99 0
LinkedHashSet 12,926 0.15 0.24 1.50 2 2 2 0.77 0
Apache BlockingBuffer 977 0.146 0.344 2.36 1 1 1 0.64 0
Apache BoundedFifoBuffer 1,437 0.140 0.296 2.11 1 1 1 0.73 0
Apache CircularFifoBuffer 3,370 0.139 0.309 2.22 1 1 1 0.70 0
Google ConcurrentMultiset 17,946 0.13 0.82 6.31 0 0 0 - 0
cache4j 3,897 3.3 35 10.60 1 1 0 1.00 0
sor 17,689 0.13 1.0 7.69 0 0 0 - 0
hedc 29,947 0.99 1.8 1.82 3 0 0 - 1
weblech 35,175 0.81 13.78 17.01 25 0 0 - 0
jspider 64,933 4.8 51 10.6 28 4 0 1.00 0
jigsaw 381,348 -1 -1 - 60 2 0 - 1

(1: running times for jigsaw are not reported due to the interactive nature of the webserver)

Table 1: Experimental results. AF stands for ATOMFUZZER.

warnings.

5.2 Results
Table 1 summarizes the results of our experiments. The open

programs (libraries) are listed before the closed ones. Column 2
reports the total number of lines of code instrumented. Some Java
language-level libraries are not instrumented, and therefore not in-
cluded in the count. Columns 3 and 4 report the average runtime of
each execution with and without ATOMFUZZER, respectively. We
do not report the runtime on Jigsaw due to the interactive nature
of the webserver. Column 5 reports the average slowdown due to
ATOMFUZZER. We observed an average slowdown in the range
of 1x-17x. This slowdown is significantly lower than the 20x-40x
slowdown observed by Atomizer [21]. This is because we do not
instrument the memory read and write operations. Since ATOM-
FUZZER is a tool for testing and debugging, we are not worried
about the runtime as long as the runtime is a few seconds.

Columns 6 reports the number of warnings observed by ATOM-
FUZZER. Note that any such warning would also be reported by an
existing atomicity checking tool such as Atomizer. Users of ATOM-
FUZZER should ignore these warnings; however, we recorded them
to illustrate how well ATOMFUZZER performs in comparison with
Atomizer. Column 7 reports the number of real atomicity violations
detected by ATOMFUZZER. The total number of warnings found
is 131. Out of them, ATOMFUZZER found 21 to be real atomic-
ity violations. Therefore, ATOMFUZZER reduced the number of
false warnings by a factor of 6x. Atomicity violations observed by
ATOMFUZZER may not result in a real bug in a program. This is
due to two reasons: 1) We use a heuristic to identify the atomic
blocks and in some situations the heuristic identification of atomic
blocks may not match the user intention. 2) An atomicity violation
may be benign—it does not affect the correctness of the program.
Therefore, in order to understand the effectiveness of the tool, we
tried to identify if an atomicity violation error reported by ATOM-
FUZZER could lead to a bug. If in an execution, ATOMFUZZER
observes an uncaught exception being thrown due to an atomicity
violation, we conclude the atomicity violation error is a bug. Oth-
erwise, we manually check the error and try to classify if the error
is benign or it was reported due to a misclassification done by our
heuristic.

Column 8 counts the number of bugs that resulted due to atom-
icity violations. ATOMFUZZER observed that 14 out of 21 atom-
icity violations could result in an uncaught exception. Note that

existing atomicity checking tools cannot report the number of real
atomicity violations or the number of exceptions that are thrown
due to such atomicity violations. By reporting the real violations
and exceptions and by making them reproducible, we significantly
simplify the job of the programmer. Column 10 reports the num-
ber of previously known atomicity violations, i.e., the atomicity
violations that were detected by Atomizer [21] and similar tools.
We are able to discover a previously known atomicity violation in
the StringBuffer class. However, we missed the previously
known atomicity violations in hedc and Jigsaw. After a closer
investigation, we found that these atomicity violations are due to
race conditions and do not fall under the special pattern in which
we are interested. Our previous dynamic race detection tool [40]
reported them as races. Therefore, we believe that even if we miss
some atomicity violations due to the consideration of a special kind
of locking pattern, the missed ones can be easily detected by a race
detection tool.

Column 9 shows that in most cases ATOMFUZZER can create
a real atomicity violations in our benchmark programs with high
probability. We ran ATOMFUZZER 10–1000 times for each bench-
mark and report for which fraction of the runs, at least one atom-
icity violation was detected. This roughly gives us the empirical
probability of ATOMFUZZER creating an atomicity violation.

5.3 Bugs Found
ATOMFUZZER discovered several previously unknown

atomicity violations in the JDK 1.4.2 synchronized classes
LinkedList, ArrayList, HashSet, TreeSet, and
LinkedHashSet. All these violations lead to uncaught
exceptions; therefore, these violations indicate real bugs.
Java provides wrappers to Collection classes to make
them “thread-safe” in a concurrent program. For example,
java.util.Collections.synchronizedSet(Set s)
wraps a java.util.Set object, so that operations on a set are
protected by a mutex. ATOMFUZZER discovered real atomicity
violations in containsAll and removeAll methods. For
example, if we call l1.containsAll(l2) then the following
methods get called.

Collections.java:
public boolean containsAll(Collection coll) {
synchronized(mutex) {

return c.containsAll(coll);
}
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}

AbstractCollections.java:
public boolean containsAll(Collection c) {

Iterator e = c.iterator();
while (e.hasNext()) {

synchronized(c) {
if(!contains(e.next()))

return false;
}

}
return true;

}

The problem happens in containsAll of
AbstractCollections.java. The while loop should
be atomic. However, between two calls to e.next() another
thread can change the collection c and this will result in a
ConcurrentModificationException.

Similarly, the removeAll method has a real atomicity viola-
tion. The code is shown below.

Collections.java:
public boolean removeAll(Collection coll) {

synchronized(mutex) {
return c.removeAll(coll);

}
}

AbstractCollections.java:
public boolean removeAll(Collection c) {

boolean modified = false;
Iterator e = iterator();
while (e.hasNext()) {

if(c.contains(e.next())) {
e.remove();
modified = true;

}
}
return modified;

}

Collections.java:
public boolean contains(Object o) {

synchronized(mutex) {
return c.contains(o);

}
}

The while loop inside removeAll should be atomic. However,
c.contains() acquires and releases a lock in each iteration.
This causes an atomicity violation in removeAll.

The errors discovered in the Apache Commons-Collections
library are due to non-synchronized use of iterators. For
example, the BoundedFifoBuffer is a wrapper class for
an unbounded buffer, which in turn extends from JDK
AbstractCollection. BoundedFifoBuffer is a syn-
chronized Buffer, which locks the underlying collection before
each operation. However, the implementation of the underlying
collection (an AbstractCollection in this case) does not take
synchronization into account, and uses the iterator in an unsafe
manner. This causes an atomicity violation error which results in
an exception.

5.4 Incompleteness Analysis
Since ATOMFUZZER is incomplete, we cannot definitely say that

an atomicity violation warning is not an error if ATOMFUZZER has

not classified the warning as an error. Similarly, we cannot defi-
nitely say that an atomicity violation error is not a bug if ATOM-
FUZZER has not classified the error as a bug. For example, in the
case of jspider ATOMFUZZER reports 28 warnings, 4 errors,
and 0 bugs. We cannot definitely say that the remaining 24 warn-
ings are not errors and that the 4 errors are not bugs. In order to
better understand the effectiveness of our technique, we manually
analyzed the 28 warnings and 4 errors and found that all the remain-
ing warnings (i.e. the warnings that were not classified as errors by
ATOMFUZZER) are not errors and all the reported errors are not
bugs. The results of our manual analysis show that ATOMFUZZER
is relatively complete for jspider; however, they do not imply
that ATOMFUZZER is complete for all concurrent programs. We
next give a detailed description of the results of our manual analy-
sis.

We found that there are two key reasons why some of the warn-
ings are not errors. First, we found that many times the main
thread releases and acquires a lock while inside an atomic block,
but before creating any thread. Therefore, no other thread can in-
terleave between the release and acquire of the lock. However, Lip-
ton’s reduction algorithm will give an atomicity violation warning.
A simplified code snippet that gives such atomicity violation warn-
ing is shown below.

public static void initialize() {
atomic {

synchronized(L) {
// do something

}
synchronized(L) {

// do something
}

}
}

public static void main(String args[]) {
initialize();
(new SomeThread()).start();

}

Second, we found that in some situations all atomic blocks that
access a particular lock (say L) are synchronized by a common lock
(say L′.) In such situations, no other thread can acquire and release
the lock L while a thread is in an atomic block and is accessing the
same lock L. Therefore, a real atomicity violation cannot happen
although Lipton’s reduction algorithm will give an atomicity viola-
tion warning. A simplified code snippet that gives such atomicity
violation warning is shown below.

public void foo() {
atomic {
synchronized(L’) {

synchronized(L) {
// do something

}
synchronized(L) {

// do something
}

}
}

}

Thread T1:

foo();

Thread T2:

foo();
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We observed that there are two reasons for getting atomicity er-
rors that are not bugs. First, we observed that our heuristic for iden-
tifying atomic blocks does not match the user intention in some sit-
uations. For example, in jspider some of the run methods that
are entry method for threads are synchronized. Because of the
heuristics we used, ATOMFUZZER treats them as atomic. However,
it is unrealistic to assume that the entry method of a thread is atomic
because such an assumption would make the entire thread atomic.
In some other situations we found that a code block has been syn-
chronized over a lock L because the thread calls L.notify() or
L.wait() inside the block. In such scenarios the block should not
treated as atomic because a call to l.wait() would naturally vio-
late the atomicity assumption. However, since our heuristic treats
any such block as atomic, we get a false atomicity error report.
We can remove these false error reports by modifying our heuristic
such that it does not treat such synchronized blocks as atomic.

ATOMFUZZER reports some atomicity errors which we have
found to be benign. An example of such a benign error is shown
below.

public static synchronized int getUniqueId() {
count++;
return count;

}

Thread T1:

atomic {
getUniqueId();
...
getUniqueId();

}

Thread T2:

getUniqueId();
...

Here any interleaving of calls to getUniqueId() is benign
because the semantics of getUniqueId() allows such inter-
leavings. We found such a benign atomicity violation error in
cache4j.

6. OTHER RELATED WORK
Recently, a couple of random testing techniques [15, 44] for

concurrent programs have been proposed. These techniques ran-
domly seed a Java program under test with the sleep(), the
yield(), and the priority() primitives at shared memory
accesses and synchronization events. Although these techniques
have successfully detected bugs in many programs, they have two
limitations. First, these techniques are not systematic as the prim-
itives sleep(), yield(), priority() can only advise the
scheduler to make a thread switch, but cannot force a thread switch.
Second, reproducibility cannot be guaranteed in such systems [44]
unless there is built-in support for capture-and-replay [15]. ATOM-
FUZZER removes these limitations by explicitly controlling the
scheduler. Moreover, ATOMFUZZER tries to bias the random
thread scheduler so that real atomicity violations get created. Flana-
gan et al. [22] have independently proposed a sound and dynamic
technique for catching atomicity violations in Java programs. The
technique is based on happens-before analysis. However, their
analysis does not focus on our proposed atomicity violation pat-
tern.

Static verification [3, 13, 30, 37, 7] and model checking [14, 31,
26, 29, 46, 33] or path-sensitive search of the state space are alter-
native approaches to finding bugs in concurrent programs. Model

checkers, being exhaustive in nature, can often find all concurrency
related bugs in concurrent programs. Unfortunately, model check-
ing does not scale with program size. Several other systematic and
exhaustive techniques [6, 8, 42, 41] for testing concurrent and par-
allel programs have been developed recently. These techniques ex-
haustively explore all interleavings of a concurrent program by sys-
tematically switching threads at synchronization points.

Randomized algorithms for model checking have also been pro-
posed. For example Monte Carlo Model Checking [27] uses a ran-
dom walk on the state space to give a probabilistic guarantee of the
validity of properties expressed in linear temporal logic. Random-
ized depth-first search [12] and its parallel extensions have been
developed to dramatically improve the cost-effectiveness of state-
space search techniques using parallelism. A randomized partial
order sampling algorithm [39] helps to sample partial orders (i.e.
non-equivalent executions) almost uniformly at random. Race di-
rected random testing [40] uses an existing dynamic analysis tool
to identify a set of pairs of statements that could potentially race in
a multi-threaded execution. Each such pair is then used to bias a
random scheduler so that the statements in the pair can be executed
temporally next to each other. Note that race directed random test-
ing needs an existing dynamic analysis tool to identify the pairs of
program statements that could race. ATOMFUZZER does not use
any existing analysis to identify the program points where atomic-
ity could be violated. It identifies them at runtime.

7. CONCLUSION
We described ATOMFUZZER, a simple, but practical and effec-

tive technique to detect real atomicity problems in multi-threaded
programs. An attractive feature of our technique is that it gives no
false warnings if programmers appropriately annotate the atomic
blocks. The tool also provides full support for replaying buggy
executions; replay makes debugging simpler. Our tool has de-
tected several previously unknown atomicity violations in mature
Java code such as the JDK 1.4.2 synchronized collections and the
Apache Commons framework.
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