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At The Beginning: A.D. 2008 

Many-core trend 

Mixed workloads on client devices 

High throughput  
parallel apps 

Interactive 
apps 

Real-time 
apps 
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Users’ expectations increase with core count 
You got more, then 



Common OS Anecdotes 

• Screen freezes when running a heavy compile job 

• Video chat becomes choppy when a local app starts 

• Impossible for me to watch a video with a scientific 
simulation in the background 

• Hey OS, what can I do? Sometimes it goes …  

 



Can We Solve Those Problems? 
Can We Reinvent the OS to … ? 

• Take advantage of many-core platforms 

• Properly serve simultaneous applications 
of different types and with conflicting 
requirements 

• Meet users’ expectations about 
performance 

and started  
Tessellation OS, Lithe, and PACORA 



Goals in Tessellation OS 

• Support a dynamic mix of high-throughput 
parallel, interactive, and real-time 
applications 

• Allow applications to deliver guaranteed or 
at least consistent performance  

• Enable adaptation to changes in the 
application mix and resource availability 



Focus on Resources  
to Provide Performance Guarantees 

• What do we want to guarantee? 

– Throughput (e.g., requests/sec) 

– Latency to response (e.g., service time) 

– Others: energy/power budget 

• What type of guarantees? 

– Probabilistic with high confidence 

• The “impedance-mismatch” problem 

– Service Level Agreements (SLAs) indicate properties that 
programmer/user wants 

– The resources required to satisfy the SLA are not things 
that programmer/user really understands 
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Cells: Performance-Isolated Resource Containers 
• Provide guaranteed access to assigned resources 
• Give full user-level control of the resources 
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Customizable User-level Runtimes in Cells 
• To best meet applications’ needs 
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OS Services with QoS Guarantees 
• Reside in dedicated cells, have exclusive control 

over devices, and arbitrate access to them 
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Adaptive Resource Allocation 
• Automatically discovers the mix of resource 

assignments that maximizes overall system utility 



Two-Level Scheduling 

Level 1  
Coarse-grained Resource 
Allocation and Distribution 

Level 2  
Fine-grained Application-
specific Scheduling 

• Chunks of resources distributed to 
applications (Global Decisions) 

• Apps use their resources in any 
way they see fit (Local Decisions) 

Split 

Monolithic  
CPU and Resource 

Scheduling 

into two pieces 
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Yellow partition grows 
due to adaptation 

Spatial Partition 
•Key for performance 
isolation 

Spatial partitioning is not static and  
may vary over time 
•Partitions can be time multiplexed; 
resources are gang-scheduled 

•Partitioning adapts to system’s needs 

• Each partition receives a vector of basic resources 
• A partition may also receive 

– Exclusive access to other resources (e.g., a device) 
– Guaranteed fractional services from other partitions 



The Cell: Our Partitioning Abstraction 
User-level Software Container  

with Guaranteed Access to Resources 
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Cell B 

• Full control over resources it owns 
when mapped to hardware 

• Resources exported to user-level 
• Adaptive user-level runtimes 
• Efficient inter-cell communication 

channels 

Yellow partition 
grows due to 
adaptation 



Basis of a Component-based Model 
with Composable Performance 

• Applications = Set of interacting components 
deployed on different cells 

– Applications split into performance-incompatible and 
mutually distrusting cells with controlled communication  

–  OS Services are independent servers that provide QoS 
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Customizable User-Level Runtimes 
Lithe: A framework for hierarchical cooperative 

user-level schedulers [PLDI’10] 

• Non-preemptive scheduling 
• Key abstraction 

– Hardware threads (harts) 
– No oversubscription! 

• Enables efficient composition 
of parallel libraries 

• http://lithe.eecs.berkeley.edu  

harts 

Tessellation Kernel 
(Partition Support) 

Application 

Library A 

Library B 

Sched 1 Sched 2 Sched 3 

Lithe Runtime 

Cell 

Hardware cores 

[PLDI’10] H. Pan, B. Hindman, K. Asanovic. Composing parallel software efficiently with Lithe. 

http://lithe.eecs.berkeley.edu/
http://lithe.eecs.berkeley.edu/
http://lithe.eecs.berkeley.edu/


• Available preemptive schedulers 
– Round-robin (and pthreads)  
– EDF and Fixed Priority 
– Multiprocessor Constant Bandwidth 

Server (M-CBS) [ECRTS’04]  

– Juggle: A load balancer for SPMD 
applications [CLUSTER’12]  

• Able to handle cell resizing  Tessellation Kernel 
(Partition Support) 

Application 

Cell 

[ECRTS’04] S. Baruah et al. Executing aperiodic jobs in a multiprocessor 
constant-bandwidth server implementation. ECRTS'04. 
[CLUSTER’12] S. Hofmeyr, J. Colmenares et al. Juggle: Addressing extrinsic 
load imbalances in SPMD applications on multicore computers. Cluster 
Computing Journal. 

PULSE Framework 

Scheduler X 

Hardware cores 

Timer 
interrupts 

Customizable User-Level Runtimes 
PULSE: A framework for  

Preemptive User-Level SchEdulers 



GUI Service [CATA’ 12] 
An OS Service with QoS Guarantees 

• Exploits task parallelism for improved service times 
• Provides differentiated service to applications and 

soft service-time guarantees 

[CATA’12] A. Kim, J. Colmenares, et al.  A soft real-time, parallel GUI service in Tessellation many-
core OS. [Best Paper Award] 



Nano-X vs. GUI Service 
Service times for 4 30-fps video players and 4 60-fps video players, 

each sending 1000 expensive requests 

Missed 
Deadlines 

Each bar represents 
4 video clients. 

Above each bar is 
the total number of 

deadlines missed 
for the group. 

Max 

Mean 

Min 

(#): Allocated hardware threads 



• Supports reservations and proportional share of 
bandwidth  

– Using mClock scheduling algorithm [OSDI’10] (on top of PULSE) 

• NIC driver is entirely contained in user-space 
– No system calls when transmitting and receiving buffers 

[DAC’13] J.A. Colmenares, G. Eads, et al. Tessellation: Refactoring the OS around explicit resource containers with continuous adaptation. 
[JAES’13] J.A. Colmenares, G. Eads, et al.  A multi-core operating system with QoS-guarantees for network audio applications. 
[OSDI’10] A. Gulati et al. mClock: handling throughput variability for hypervisor IO scheduling. 

Network Service [DAC’13, JAES’13] 
An OS Service with QoS Guarantees 

(Avg. throughput = 125.2 KB/s) 



Adaptive Resource Allocation 
in Tessellation OS 

[DAC’13] J.A. Colmenares, G. Eads et al. Tessellation: Refactoring the OS around explicit resource containers with continuous adaptation.  
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Resource Allocation using 
Convex Optimization with 
Online Application 
Performance Models 

Response Time Function 
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PACORA 

[HOTPAR’11] S. Bird and B. Smith. PACORA: Performance 
aware convex optimization for resource allocation. 



Known Facts and Lessons Learned 

• [KF] Implementing an OS from scratch is challenging 

• [KF] Supporting IO devices is very important  

• [LL] Tessellation’s structuring redistributes complexity 

– Lot of complexity moved from the kernel to user-level runtimes 

– Contending factor: overhead 

• [LL] Having a simple kernel is very beneficial 

– Easier to reason about it, especially when providing 
performance guarantees  

• [LL] Coordination between kernel and cell’s user-level 
runtime is tricky (e.g., during cell resizing) 

– Not many LOCs, but very subtle issues and difficult to debug  

 



Summary 
• Challenge: Reinventing the OS for many-core platforms 

– Properly serve simultaneous applications of different types 
– Meet users’ performance expectations 

• Approach: Adaptive Resource-Centric Computing 
– Focuses on Space-Time Partitioning and Two-Level 

Scheduling 
– Includes  

• Cells: Resource containers 
• Customizable user-level runtimes 
• OS services with QoS guarantees 
• Adaptive resource allocation 

• Implementation: Tess OS, Lithe, PULSE, and PACORA 
• Effectiveness: Demonstrated in publications and 

demos! 



Demos on Tessellation OS 

• Adaptive Resource Centric 
Computing  

– Entirely on Tessellation 

• Live Musical Performance 
– A synthesizer performing parallel 

real-time audio processing and 
controlled via the SLABS multi-touch 
interface 

• Million Song Recommendation 
(Pardora) System 

– Specialized code on top of TBB/Lithe, 
plus python code 

• Virtual Instrument 
– One of the backends  



Next 

• Demonstration of Adaptive Resource Centric 
Computing 

– Gage Eads and Sarah Bird, UC Berkeley 

• Testimonial 

– Dave Probert, Microsoft  



Adaptive Resource Centric Computing 
Demonstration 



Network 

 

 

Cores 

 

 

Adaptive Resource Centric Computing 
Demonstration 

Bandwidth 
Hog 

Video Players 
(1 vid per thread) psearchy 

• TCP client 
application 

• Single-threaded 
• Goal: consume 

maximum 
bandwidth 

• Receives video 
stream from TCP 
connection 

• 2 video sizes 
• Performs H.264 

decoding 
• Goal: 30 FPS 

• Parallel file indexing 
benchmark 

• Scalable work-
queue based 
parallelism 

• Goal: maximize 
indexing throughput 

(QoS from network service) (QoS from kernel) 



THANKS 

Come and see our demos! 

 

Questions? 



Gang Scheduling in Tessellation 

• No need of inter-core communication (in the 
common case) due to use of synchronized clocks  

• Different time-multiplexing policies for cells 

Identical 
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Schedules 
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Algorithm 
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