
Refactoring the OS around Explicit Resource
Containers with Continuous Adaptation

Operating Systems Research in the Par Lab

Presented by Juan A. Colmenares, Gage Eads and Sarah Bird
at the End of the Par Lab Symposium

May 30, 2013
Berkeley, CA

The OS Group
Par Lab, UC Berkeley

http://tessellation.cs.berkeley.edu

http://tessellation.cs.berkeley.edu/
http://tessellation.cs.berkeley.edu/

Acknowledgment

• Research supported by

– Intel (Award #024894)

– Microsoft (Award #024263)

– U.C. Discovery funding (Award #DIG07-102270)

• Additional support from Par Lab affiliates

– National Instruments, NEC, Nokia, NVIDIA,
Samsung, Sun Microsystems

Disclaimer
No part of this presentation necessarily represents the views

and opinions of the aforementioned sponsors

• Hilfi Alkaff (UCB)
• Krste Asanović (UCB Faculty)
• Rimas Avižienis (UCB)
• Davide Bartolini (Politecnico di

Milano / UCB)
• Eric Battenberg (UCB)
• Sarah Bird (UCB)
• David Chou (UCB)
• Juan Colmenares (UCB/Samsung)
• Henry Cook (UCB)
• Gage Eads (UCB)
• Brian Gluzman (UCB)
• Ben Hindman (UCB)
• Steven Hofmeyr (LBL)
• Eduardo Huerta (ICSI)
• Costin Iancu (LBL)
• Israel Jacques (UCB)

• John Kubiatowicz (Lead, UCB Faculty)
• Albert Kim (UCB)
• Kevin Klues (UCB)
• Akihito Kohiga (NEC)
• Eric Love (UCB)
• Rose Liu (MIT)
• Miquel Moretó (UCB/UPC)
• Nitesh Mor (UCB)
• Paul Pearce (UCB)
• Heidi Pan (MIT/Intel)
• Nils Peters (UCB/Qualcomm)
• Barret Rhoden (UCB)
• Eric Roman (LBL)
• Ian Saxton (UCB)
• John Shalf (LBL)
• Burton Smith (MSR)
• Andrew Waterman (USB)
• David Wessel (UCB Faculty)
• David Zhu (UCB)

Team and Collaborators

At The Beginning: A.D. 2008

Many-core trend

Mixed workloads on client devices

High throughput
parallel apps

Interactive
apps

Real-time
apps

B
IP

S

Cores

Users’ expectations increase with core count
You got more, then

Common OS Anecdotes

• Screen freezes when running a heavy compile job

• Video chat becomes choppy when a local app starts

• Impossible for me to watch a video with a scientific
simulation in the background

• Hey OS, what can I do? Sometimes it goes …

Can We Solve Those Problems?
Can We Reinvent the OS to … ?

• Take advantage of many-core platforms

• Properly serve simultaneous applications
of different types and with conflicting
requirements

• Meet users’ expectations about
performance

and started
Tessellation OS, Lithe, and PACORA

Goals in Tessellation OS

• Support a dynamic mix of high-throughput
parallel, interactive, and real-time
applications

• Allow applications to deliver guaranteed or
at least consistent performance

• Enable adaptation to changes in the
application mix and resource availability

Focus on Resources
to Provide Performance Guarantees

• What do we want to guarantee?

– Throughput (e.g., requests/sec)

– Latency to response (e.g., service time)

– Others: energy/power budget

• What type of guarantees?

– Probabilistic with high confidence

• The “impedance-mismatch” problem

– Service Level Agreements (SLAs) indicate properties that
programmer/user wants

– The resources required to satisfy the SLA are not things
that programmer/user really understands

Application1

QoS-aware
Scheduler

Block
Service

QoS-aware
Scheduler

Network
Service

QoS-aware
Scheduler

GUI
Service

Channel

Running System

(Data Plane)

Application2

Channel

Performance
Reports

Resource
Assignments

Resource Allocation
(Control Plane)

Partitioning

and

Distribution

Observation

and

Modeling

Adaptive Resource-Centric
Computing (ARCC) [DAC’13]

Cell Cell

Cell

Application1

QoS-aware
Scheduler

Block
Service

QoS-aware
Scheduler

Network
Service

QoS-aware
Scheduler

GUI
Service

Channel

Running System

(Data Plane)

Application2

Channel

Performance
Reports

Resource
Assignments

Resource Allocation
(Control Plane)

Partitioning

and

Distribution

Observation

and

Modeling

Adaptive Resource-Centric
Computing (ARCC)

Cell Cell

Cell

Cells: Performance-Isolated Resource Containers
• Provide guaranteed access to assigned resources
• Give full user-level control of the resources

Application1

QoS-aware
Scheduler

Block
Service

QoS-aware
Scheduler

Network
Service

QoS-aware
Scheduler

GUI
Service

Channel

Running System

(Data Plane)

Application2

Channel

Performance
Reports

Resource
Assignments

Resource Allocation
(Control Plane)

Partitioning

and

Distribution

Observation

and

Modeling

Adaptive Resource-Centric
Computing (ARCC)

Cell Cell

Cell

Customizable User-level Runtimes in Cells
• To best meet applications’ needs

Application1

QoS-aware
Scheduler

Block
Service

QoS-aware
Scheduler

Network
Service

QoS-aware
Scheduler

GUI
Service

Channel

Running System

(Data Plane)

Application2

Channel

Performance
Reports

Resource
Assignments

Resource Allocation
(Control Plane)

Partitioning

and

Distribution

Observation

and

Modeling

Adaptive Resource-Centric
Computing (ARCC)

Cell Cell

Cell

OS Services with QoS Guarantees
• Reside in dedicated cells, have exclusive control

over devices, and arbitrate access to them

Application1

QoS-aware
Scheduler

Block
Service

QoS-aware
Scheduler

Network
Service

QoS-aware
Scheduler

GUI
Service

Channel

Running System

(Data Plane)

Application2

Channel

Performance
Reports

Resource
Assignments

Resource Allocation
(Control Plane)

Partitioning

and

Distribution

Observation

and

Modeling

Adaptive Resource-Centric
Computing (ARCC)

Cell Cell

Cell

Adaptive Resource Allocation
• Automatically discovers the mix of resource

assignments that maximizes overall system utility

Two-Level Scheduling

Level 1
Coarse-grained Resource
Allocation and Distribution

Level 2
Fine-grained Application-
specific Scheduling

• Chunks of resources distributed to
applications (Global Decisions)

• Apps use their resources in any
way they see fit (Local Decisions)

Split

Monolithic
CPU and Resource

Scheduling

into two pieces

Space-Time Partitioning

Time

Sp
ac

e

Yellow partition grows
due to adaptation

Spatial Partition
•Key for performance
isolation

Spatial partitioning is not static and
may vary over time
•Partitions can be time multiplexed;
resources are gang-scheduled

•Partitioning adapts to system’s needs

• Each partition receives a vector of basic resources
• A partition may also receive

– Exclusive access to other resources (e.g., a device)
– Guaranteed fractional services from other partitions

The Cell: Our Partitioning Abstraction
User-level Software Container

with Guaranteed Access to Resources

2nd-level
Scheduling

2nd-level
Mem Mgmt

Address
Space A

Address
Space B

Cell A

Task

Time

Sp
ac

e

Cell B

• Full control over resources it owns
when mapped to hardware

• Resources exported to user-level
• Adaptive user-level runtimes
• Efficient inter-cell communication

channels

Yellow partition
grows due to
adaptation

Basis of a Component-based Model
with Composable Performance

• Applications = Set of interacting components
deployed on different cells

– Applications split into performance-incompatible and
mutually distrusting cells with controlled communication

– OS Services are independent servers that provide QoS

Application
Component

Device
Drivers

File
Service

Real-time
Cell

Core
Application

Parallel
Library

Channel

Channel

Storage
Device

Customizable User-Level Runtimes
Lithe: A framework for hierarchical cooperative

user-level schedulers [PLDI’10]

• Non-preemptive scheduling
• Key abstraction

– Hardware threads (harts)
– No oversubscription!

• Enables efficient composition
of parallel libraries

• http://lithe.eecs.berkeley.edu

harts

Tessellation Kernel
(Partition Support)

Application

Library A

Library B

Sched 1 Sched 2 Sched 3

Lithe Runtime

Cell

Hardware cores

[PLDI’10] H. Pan, B. Hindman, K. Asanovic. Composing parallel software efficiently with Lithe.

http://lithe.eecs.berkeley.edu/
http://lithe.eecs.berkeley.edu/
http://lithe.eecs.berkeley.edu/

• Available preemptive schedulers
– Round-robin (and pthreads)
– EDF and Fixed Priority
– Multiprocessor Constant Bandwidth

Server (M-CBS) [ECRTS’04]

– Juggle: A load balancer for SPMD
applications [CLUSTER’12]

• Able to handle cell resizing Tessellation Kernel
(Partition Support)

Application

Cell

[ECRTS’04] S. Baruah et al. Executing aperiodic jobs in a multiprocessor
constant-bandwidth server implementation. ECRTS'04.
[CLUSTER’12] S. Hofmeyr, J. Colmenares et al. Juggle: Addressing extrinsic
load imbalances in SPMD applications on multicore computers. Cluster
Computing Journal.

PULSE Framework

Scheduler X

Hardware cores

Timer
interrupts

Customizable User-Level Runtimes
PULSE: A framework for

Preemptive User-Level SchEdulers

GUI Service [CATA’ 12]
An OS Service with QoS Guarantees

• Exploits task parallelism for improved service times
• Provides differentiated service to applications and

soft service-time guarantees

[CATA’12] A. Kim, J. Colmenares, et al. A soft real-time, parallel GUI service in Tessellation many-
core OS. [Best Paper Award]

Nano-X vs. GUI Service
Service times for 4 30-fps video players and 4 60-fps video players,

each sending 1000 expensive requests

Missed
Deadlines

Each bar represents
4 video clients.

Above each bar is
the total number of

deadlines missed
for the group.

Max

Mean

Min

(#): Allocated hardware threads

• Supports reservations and proportional share of
bandwidth

– Using mClock scheduling algorithm [OSDI’10] (on top of PULSE)

• NIC driver is entirely contained in user-space
– No system calls when transmitting and receiving buffers

[DAC’13] J.A. Colmenares, G. Eads, et al. Tessellation: Refactoring the OS around explicit resource containers with continuous adaptation.
[JAES’13] J.A. Colmenares, G. Eads, et al. A multi-core operating system with QoS-guarantees for network audio applications.
[OSDI’10] A. Gulati et al. mClock: handling throughput variability for hypervisor IO scheduling.

Network Service [DAC’13, JAES’13]
An OS Service with QoS Guarantees

(Avg. throughput = 125.2 KB/s)

Adaptive Resource Allocation
in Tessellation OS

[DAC’13] J.A. Colmenares, G. Eads et al. Tessellation: Refactoring the OS around explicit resource containers with continuous adaptation.

Sy
st

em
 P

en
al

ty

Continuously minimize the
penalty of the system

(subject to restrictions on the
total amount of resources)

 Response Time1

Pe
n

al
ty

1

 Response Time2 ((0,2), …, (n-1,2))
 Response Time2

 Response Timei

Penalty Function

Pe
n

al
ty

2

Pe
n

al
ty

i

Se
t

o
f

R
u

n
n

in
g

A
p

p
lic

at
io

n
s

Resource Allocation using
Convex Optimization with
Online Application
Performance Models

Response Time Function

 Response Time1((0,1), …, (n-1,1))

Speech Recognition

Stencil

Graph Traversal

 Response Timei((0,i), …, (n-1,i))

PACORA

[HOTPAR’11] S. Bird and B. Smith. PACORA: Performance
aware convex optimization for resource allocation.

Known Facts and Lessons Learned

• [KF] Implementing an OS from scratch is challenging

• [KF] Supporting IO devices is very important

• [LL] Tessellation’s structuring redistributes complexity

– Lot of complexity moved from the kernel to user-level runtimes

– Contending factor: overhead

• [LL] Having a simple kernel is very beneficial

– Easier to reason about it, especially when providing
performance guarantees

• [LL] Coordination between kernel and cell’s user-level
runtime is tricky (e.g., during cell resizing)

– Not many LOCs, but very subtle issues and difficult to debug

Summary
• Challenge: Reinventing the OS for many-core platforms

– Properly serve simultaneous applications of different types
– Meet users’ performance expectations

• Approach: Adaptive Resource-Centric Computing
– Focuses on Space-Time Partitioning and Two-Level

Scheduling
– Includes

• Cells: Resource containers
• Customizable user-level runtimes
• OS services with QoS guarantees
• Adaptive resource allocation

• Implementation: Tess OS, Lithe, PULSE, and PACORA
• Effectiveness: Demonstrated in publications and

demos!

Demos on Tessellation OS

• Adaptive Resource Centric
Computing

– Entirely on Tessellation

• Live Musical Performance
– A synthesizer performing parallel

real-time audio processing and
controlled via the SLABS multi-touch
interface

• Million Song Recommendation
(Pardora) System

– Specialized code on top of TBB/Lithe,
plus python code

• Virtual Instrument
– One of the backends

Next

• Demonstration of Adaptive Resource Centric
Computing

– Gage Eads and Sarah Bird, UC Berkeley

• Testimonial

– Dave Probert, Microsoft

Adaptive Resource Centric Computing
Demonstration

Network

Cores

Adaptive Resource Centric Computing
Demonstration

Bandwidth
Hog

Video Players
(1 vid per thread) psearchy

• TCP client
application

• Single-threaded
• Goal: consume

maximum
bandwidth

• Receives video
stream from TCP
connection

• 2 video sizes
• Performs H.264

decoding
• Goal: 30 FPS

• Parallel file indexing
benchmark

• Scalable work-
queue based
parallelism

• Goal: maximize
indexing throughput

(QoS from network service) (QoS from kernel)

THANKS

Come and see our demos!

Questions?

Gang Scheduling in Tessellation

• No need of inter-core communication (in the
common case) due to use of synchronized clocks

• Different time-multiplexing policies for cells

Identical
or
Consistent
Schedules

Multiplexer

Core 2 Core 1

Gang-
Scheduling
Algorithm

Core 3 Core 0

Multiplexer

Gang-
Scheduling
Algorithm

Multiplexer
Gang-

Scheduling
Algorithm

Multiplexer

Gang-
Scheduling
Algorithm

N
o

 M
u

xe
d

