clSpMV: A Cross-Platform OpenCL SpMV Framework on GPUs

Bor-Yiing Su, subrian@eecs.berkeley.edu
Kurt Keutzer, keutzer@eecs.berkeley.edu

Parallel Computing Lab,
University of California, Berkeley
Outline

- Motivation
- The Cocktail Sparse Matrix Format
- The clSpMV Framework
- Experimental Results
- Conclusion
Many iterative methods are composed of a BLAS2 operation with BLAS1 updates

- BLAS2 operation dominates the execution time

Many matrices are sparse in natural

- We need to optimize the SpMV operation

Algorithm: Conjugate Gradient
Input:
- A (Symmetric Matrix)
- b (Vector)
- x_0 (Initial Solution)
Output:
- x (Final Solution)

1. \(r_0 \leftarrow b - Ax_0 \);
2. \(p_0 \leftarrow r_0 \);
3. **for** $k \leftarrow 0, 1, \ldots, \text{until convergence}$
 a. \(v_k \leftarrow Ap_k \);
 b. \(\alpha_k \leftarrow \frac{r_k^T r_k}{p_k^T v_k} \);
 c. \(x_{k+1} \leftarrow x_k + \alpha_k p_k \);
 d. \(r_{k+1} \leftarrow r_k - \alpha_k v_k \);
 e. **Test bounds for convergence**;
 f. \(\beta_k \leftarrow \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k} \);
 g. \(p_{k+1} \leftarrow r_{k+1} + \beta_k p_k \);
4. **end for**
5. Return x_{k+1}.

Algorithm: Lanczos
Input:
- A (Symmetric Matrix)
- v (Initial Vector)
Output:
- Θ (Ritz Values)
- X (Ritz Vectors)

1. Start with $r \leftarrow v$;
2. \(\beta_0 \leftarrow \|r\|_2 \);
3. **for** $j \leftarrow 1, 2, \ldots, \text{until convergence}$
 a. \(v_j \leftarrow r / \beta_{j-1} \);
 b. \(\alpha_j \leftarrow v_j^T r \);
 c. \(r \leftarrow r - v_{j-1} \beta_{j-1} \);
 d. **Reorthogonalize if necessary**;
 e. \(\beta_j \leftarrow \|r\|_2 \);
 f. **Compute Ritz values** $T_j = SS^T$;
 g. **Test bounds for convergence**;
4. **end for**
5. **Compute Ritz vectors** $X \leftarrow V_j S$;
Optimizing the SpMV Computation

- Challenges of SpMV
 - Low arithmetic intensity (memory bounded)
 - Irregular memory access

- Minimizing memory footprint
 - Proposing new sparse matrix formats

- Saturating memory bandwidth
 - Optimizing the memory access pattern on the memory system

- Block matrix
- Symmetric
- Diagonal

Intel Xeon E5345 (Clovertown)
NVIDIA G80
Outline

- Motivation
- The Cocktail Sparse Matrix Format
- The clSpMV Framework
- Experimental Results
- Conclusion
Pros and Cons of Matrix Formats

- Every sparse matrix format has its own pros and cons
- Most of the matrix formats fall into three categories

<table>
<thead>
<tr>
<th>Matrix Format Category</th>
<th>Example Sparse Matrix</th>
<th>Included Matrix Formats</th>
<th>Pros</th>
<th>Cons</th>
<th>Suggested Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td></td>
<td>BDIA DIA</td>
<td>• Implicit column indices for diagonals • Aligned memory access pattern</td>
<td>• Need zero fillings on sparse diagonals</td>
<td>• Matrices that are mainly dense diagonals</td>
</tr>
<tr>
<td>Blocked</td>
<td></td>
<td>SBELL BELL BCSR</td>
<td>• Implicit column indices for blocks • Can reuse the multiplied vector</td>
<td>• Need zero fillings on sparse blocks</td>
<td>• Matrices that are mainly dense blocks</td>
</tr>
<tr>
<td>Flat</td>
<td></td>
<td>SELL ELL CSR COO</td>
<td>• No zero fillings • Need explicit column indices • Unaligned memory access</td>
<td></td>
<td>• Irregular matrices</td>
</tr>
</tbody>
</table>
Pros and Cons of Diagonal-Based Formats

- **DIA**: Diagonal format
- **BDIA**: Banded DIA format

<table>
<thead>
<tr>
<th>Matrix Format</th>
<th>Example Sparse Matrix</th>
<th>Pros</th>
<th>Cons</th>
<th>Suggested Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIA</td>
<td></td>
<td>• More flexible on the width of the diagonals</td>
<td>• Cannot use shared memory to cache the vector</td>
<td>• Matrices with arbitrary dense diagonals</td>
</tr>
<tr>
<td>BDIA</td>
<td></td>
<td>• Can use shared memory to cache the vector</td>
<td>• Need extra storage to store the pointers to each band</td>
<td>• Matrices with dense bands</td>
</tr>
</tbody>
</table>
Pros and Cons of Flat Formats

<table>
<thead>
<tr>
<th>Matrix Format</th>
<th>Example Matrix Storage</th>
<th>Pros</th>
<th>Cons</th>
<th>Suggested Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELL</td>
<td></td>
<td>• Aligned memory access</td>
<td>• Need zero paddings</td>
<td>• Matrices with similar # of non-zero per row</td>
</tr>
<tr>
<td>SELL</td>
<td></td>
<td>• Aligned memory access • Fewer zero paddings</td>
<td>• Still need zero paddings • Additional pointers to slices</td>
<td>• Matrices with similar # of non-zero per slice</td>
</tr>
<tr>
<td>CSR</td>
<td></td>
<td>• No zero paddings</td>
<td>• Unaligned memory access • Bad load balance</td>
<td>• Matrices with moderate irregular # of non-zero per row</td>
</tr>
<tr>
<td>COO</td>
<td></td>
<td>• No zero paddings • Good load balance</td>
<td>• Explicit row indices</td>
<td>• Matrices with highly irregular # of non-zero per row</td>
</tr>
</tbody>
</table>
Pros and Cons of Blocked Formats

- **BELL: Blocked ELL**
- **SBELL: Sliced blocked ELL**
- **BCSR: Blocked CSR**

<table>
<thead>
<tr>
<th>Matrix Format</th>
<th>Example Matrix Storage</th>
<th>Pros</th>
<th>Cons</th>
<th>Suggested Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELL</td>
<td></td>
<td>• Aligned memory access</td>
<td>• Need zero paddings</td>
<td>• Matrices with similar # of blocks per blocked row</td>
</tr>
</tbody>
</table>
| SBELL | | • Aligned memory access
 | | • Fewer zero paddings | • Matrices with similar # of blocks per slice |
| BCSR | | • No zero paddings | • Unaligned memory access
 | | • Bad load balance | • Matrices with irregular # of blocks per blocked row |
The Cocktail Format

- Our premise: Every specialized region on a matrix deserves its own specialized representation
- The Cocktail Format: A combination of many different sparse matrix formats
 - A specialized submatrix is represented by a specialized format
 - Trivial case: Only one format is selected to represent the matrix
 - Complicated case: a matrix is partitioned into many submatrices, each represented by a different format
The Cocktail Matrix Partitioning Problem

- Challenges in matrix partitioning
 - The partition is matrix dependent
 - The partition is platform dependent
 - The partition is implementation dependent

- The Cocktail Matrix Partitioning (CMP) problem
 - Input: matrix A, k formats supported by the Cocktail Format, f_1, f_2, \ldots, f_k, k sets of implementations P_1 to P_k for formats f_1 to f_k
 - Let $t(A_i, f_i, L_i)$ be the execution time of a SpMV kernel using format f_i and implementation L_i on submatrix A_i
 - Output: submatrices A_1 to A_k, implementations L_1 to L_k

$$\begin{align*}
\min & \quad \sum_{i=1}^{k} t(A_i, f_i, L_i) \\
\text{s.t.} & \quad \sum_{i=1}^{k} A_i = A \\
& \quad L_i \in P_i \quad \forall 1 \leq i \leq k
\end{align*}$$
Outline

- Motivation
- The Cocktail Sparse Matrix Format
- The clSpMV Framework
- Experimental Results
- Conclusion
Overall Structure of clSpMV

- Offline benchmarking
 - Used to estimate the $t(A_i, f_i, L_i)$ values
- Online decision making
 - Partition the input matrix according to the offline benchmarking profiles
Offline Benchmarking

- One-time cost
- For every implementation of every format supported by clSpMV, sample the execution time on different sparse matrices
 - Sample on the matrix dimension and # non-zeros per row
 - Use interpolation to estimate \(t(A_i, f_i, L_i) \) values in the online decision making stage
 - The estimation accuracy can be further improved by getting more sample points (e.g. variations of # non-zeros per row)
Online Decision Making

- Analyze the input matrix
- Extract specialized regions that should be represented by specialized formats
- Use offline benchmarking profile to choose the best implementation for the underlying hardware platform
- Use a decision tree to guide the procedure of analysis and extraction
- Decide the priority of the matrix categories
 - Based on the highest estimated performance each category can achieve
Converting between formats is expensive

Follow a three-step strategy
 - Feature collection: Collecting features that are able to differentiate performance of different formats in the same category
 - Evaluation: Estimating the performance of different partitioning scenarios, find the best scenario
 - Extraction: Extracting submatrices based on the best scenario
Decision Tree: Extract Diagonals

- Feature collection
 - Compute the number of non-zeros per diagonal
- Evaluation
 - Evaluate the estimated performance of each tree branch, and make decision
- Extraction
 - Extract diagonals or bands based on the evaluation decision
Extracting Diagonals: Evaluation

- Definition of dense diagonals
 - g_d: maximum GFLOPS achievable by the diagonal category at the current matrix settings
 - g_f: maximum GFLOPS achievable by the flat category at the current matrix settings
 - n_d: the dimension of a diagonal
 - e_d: # of non-zeros in a diagonal
 - A diagonal is considered dense if $e_d > n_d g_f / g_d$

- Decision tree branches
 - Extract DIA: Representing all dense diagonals with DIA
 - Extract BDIA: Representing all dense diagonals with BDIA
 - Extract DIA and BDIA: Representing thick bands with BDIA, and thin bands with DIA
Decision Tree: Extract Blocks

- Feature collection
 - Compute the number of dense/sparse blocks per row
- Evaluation
 - Evaluate the estimated performance of each tree branch, and make decision
- Extraction
 - Extract blocks based on the evaluation decision
Extracting Blocks: Evaluation

- Definition of dense blocks
 - \(g_b \): maximum GFLOPS achievable by the blocked category at the current matrix settings
 - \(g_f \): maximum GFLOPS achievable by the flat category at the current matrix settings
 - \(n_b \): the size of a block
 - \(e_b \): # of non-zeros in a block
 - A block is considered dense if \(e_b > n_b g_f / g_b \)

- Decision tree branches
 - Extract SBELL: Representing all dense blocks/all non-zeros with SBELL
 - Extract BELL: Representing all dense blocks/all non-zeros with BELL
 - Extract BCSR: Representing all dense blocks/all non-zeros with BCSR
 - Extract None: Do not extract any dense blocks
We should extract regular # of non-zeros per row using ELL or SELL, then use CSR or COO to represent the remaining irregular non-zeros.

Feature collection
- Compute the number of non-zeros per row

Evaluation
- Evaluate the estimated performance of each tree branch, and make decision

Extraction
- Extract ELL or SELL parts based on the evaluation decision
Extracting ELL or SELL: Evaluation

- Decision tree branches
 - Extract ELL
 - \(w \): ELL width
 - \(z(w) \): zero paddings with width \(w \)
 - \(e(w) \): # of non-zeros covered with width \(w \)
 - \(r(w) \): # of remaining non-zeros not covered with width \(w \)
 - \(g_{ELL} \): achievable performance of ELL
 - \(m_c \): maximum achievable GFLOPS with CSR or COO formats
 - \(c \): # of columns of the matrix
 - Solve the following problem:
 \[
 \min \frac{(z(w) + e(w))}{g_{ELL}} + \frac{r(w)}{m_c} \]
 (the estimated execution time)
 s. t. \(w \leq c \)
 \(w \) is an integer
 - Extract SELL: Similar to ELL, but consider each slice separately
 - Extract None: Do not extract ELL or SELL portions
Decision Tree: Extract CSR or COO

- Feature collection
 - Compute the load balancing problem of the CSR format
- Evaluation
 - Evaluate the estimated performance of each tree branch, and make decision
- Extraction
 - Representing the remaining matrix with CSR or COO format based on the evaluation decision
Extracting CSR or COO: Evaluation

- Decision tree branches (CSR vs. COO)
 - u: # of work groups created in CSR
 - n: # of non-zeros
 - $nnz(i)$: # of non-zeros computed by work group i
 - g_{CSR}: achievable performance of CSR
 - g_{COO}: achievable performance of COO
 - Select CSR if the following criterion is met; select COO if the criterion is not met

\[
\frac{u \times \max_{1 \leq i \leq u} nnz(i)}{g_{CSR}} < \frac{n}{g_{COO}}
\]
Overhead of the Online Decision Making Stage

- Analysis and extraction cost
 - Diagonal analysis: 2 SpMV
 - Block analysis: 20 SpMV per block size
 - Flat analysis: 4 SpMV

- Block analysis dominates the online decision making stage

- Possible fixes
 - Let user to provide clues on the block dimension, and the uniformity of the number of dense blocks per row
 - Skip the entire analysis procedure, just do extraction
 - Might reduce the cost to 1-2 SpMV
 - Instead of analyzing the entire matrix, sample it
 - OSKI by Vuduc et al. achieves good performance based on this approach\(^1\)
 - Parallelize the analysis procedure
 - All the features are basically histogram accumulation, very likely to get 10-30x speedups

Outline

- Motivation
- The Cocktail Sparse Matrix Format
- The clSpMV Framework
- Experimental Results
- Conclusion
Experiment Setup

- The benchmarking sparse matrices
 - 14 matrices from William et al.’s 2007 SC paper\(^1\)
 - Most of them are regular, only one format is enough
 - 6 matrices from the University of Florida Sparse Matrix Collection
 - Choose irregular matrices

- clSpMV statistics
 - 9 sparse matrix formats
 - 107 kernels

- Experiment platform and comparison
 - Nvidia GTX 480
 - Compare to the Hybrid format from Nvidia’s 2009 SC paper\(^2\)
 - Compare to the best format from Nvidia’s 2009 SC paper\(^2\)
 - Compare to the best single format including Nvidia’s implementation and our implementation
 - AMD Radeon 6970
 - Compare to the best single format

Offline Benchmarking on Nvidia GTX 480
clSpMV Performance on Nvidia GTX 480: Regular Matrices

- Performance on 11 regular matrices
 - Only one format is chosen by clSpMV to represent these matrices
 - 114% better than the Nvidia Hybrid format
 - 48% better than the best Nvidia format
 - 0.5% worse than the best single format
cIspMV Format Selection on Regular Matrices (GTX 480)

<table>
<thead>
<tr>
<th>Name</th>
<th>Spyplot</th>
<th>Dimension</th>
<th>Nonzeros (nnz/row)</th>
<th>Best Single Format</th>
<th>cIspMV Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense</td>
<td></td>
<td>2kx2k</td>
<td>4M (2k)</td>
<td>BCSR</td>
<td>BCSR</td>
</tr>
<tr>
<td>Protein</td>
<td></td>
<td>36kx36k</td>
<td>4.3M (119)</td>
<td>SBELL</td>
<td>SBELL</td>
</tr>
<tr>
<td>Spheres</td>
<td></td>
<td>83kx83k</td>
<td>6M (72)</td>
<td>SBELL</td>
<td>SBELL</td>
</tr>
<tr>
<td>Cantilever</td>
<td></td>
<td>62kx62k</td>
<td>4M (65)</td>
<td>SBELL</td>
<td>SBELL</td>
</tr>
<tr>
<td>Wind</td>
<td></td>
<td>218kx218k</td>
<td>11.6M (53)</td>
<td>SBELL</td>
<td>SBELL</td>
</tr>
<tr>
<td>Harbor</td>
<td></td>
<td>47kx47k</td>
<td>2.37M (50)</td>
<td>SBELL</td>
<td>SBELL</td>
</tr>
<tr>
<td>QCD</td>
<td></td>
<td>49kx49k</td>
<td>1.9M (39)</td>
<td>SELL</td>
<td>ELL</td>
</tr>
<tr>
<td>Ship</td>
<td></td>
<td>141kx141k</td>
<td>3.98M (28)</td>
<td>SBELL</td>
<td>SBELL</td>
</tr>
<tr>
<td>Epidemiology</td>
<td></td>
<td>526kx526k</td>
<td>2.1M (4)</td>
<td>SELL</td>
<td>ELL</td>
</tr>
<tr>
<td>Accelerator</td>
<td></td>
<td>121kx121k</td>
<td>2.62M (22)</td>
<td>SBELL</td>
<td>SELL</td>
</tr>
<tr>
<td>LP</td>
<td></td>
<td>4kx1.1M</td>
<td>11.3M (2825)</td>
<td>BCSR</td>
<td>BCSR</td>
</tr>
</tbody>
</table>
The performance on 9 irregular matrices
- clSpMV decides to partition the matrix into many submatrices
- 46% better than the Nvidia Hybrid format
- 29% better than the best Nvidia format
- 38% better than the best single format
cISpMV Format Selection on Irregular Matrices (GTX 480)

<table>
<thead>
<tr>
<th>Name</th>
<th>Spyplot</th>
<th>Dimension</th>
<th>Nonzeros (nnz/row)</th>
<th>Best Single Format</th>
<th>cISpMV Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics</td>
<td></td>
<td>207kx207k</td>
<td>1.27M (6)</td>
<td>SELL</td>
<td>ELL(81%) COO(19%)</td>
</tr>
<tr>
<td>Circuit</td>
<td></td>
<td>171kx171k</td>
<td>959k (6)</td>
<td>SELL</td>
<td>ELL(84%) COO(16%)</td>
</tr>
<tr>
<td>Webbase</td>
<td></td>
<td>1Mx1M</td>
<td>3.1M (3)</td>
<td>COO</td>
<td>ELL(64%) COO(36%)</td>
</tr>
<tr>
<td>Circuit5M</td>
<td></td>
<td>5.56Mx5.56M</td>
<td>59.5M (11)</td>
<td>COO</td>
<td>DIA(9%) SELL(73%) COO(18%)</td>
</tr>
<tr>
<td>Eu-2005</td>
<td></td>
<td>863Kx863K</td>
<td>19M (22)</td>
<td>SBELL</td>
<td>SELL(85%) COO(15%)</td>
</tr>
<tr>
<td>Ga41As41H72</td>
<td></td>
<td>268kx268k</td>
<td>18M (67)</td>
<td>CSR</td>
<td>BDIA(18%) ELL(32%) CSR(50%)</td>
</tr>
<tr>
<td>in-2004</td>
<td></td>
<td>1.38Mx1.38M</td>
<td>17M (12)</td>
<td>SBELL</td>
<td>SELL(79%) COO(21%)</td>
</tr>
<tr>
<td>mip1</td>
<td></td>
<td>66Kx66K</td>
<td>10M (152)</td>
<td>CSR</td>
<td>SBELL(80%) SELL(17%) COO(3%)</td>
</tr>
<tr>
<td>Si41Ge41H72</td>
<td></td>
<td>186kx186k</td>
<td>15M (81)</td>
<td>CSR</td>
<td>BDIA(15%) ELL(27%) CSR(58%)</td>
</tr>
</tbody>
</table>
Offline Benchmarking on AMD Radeon 6970
The performance on 9 regular matrices
- Only one format is chosen by clSpMV to represent these matrices
- 2% worse than the best single format
<table>
<thead>
<tr>
<th>Name</th>
<th>Spyplot</th>
<th>Dimension</th>
<th>Nonzeros (nnz/row)</th>
<th>Best Single Format</th>
<th>clSpMV Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense</td>
<td></td>
<td>2kx2k</td>
<td>4M (2k)</td>
<td>BCSR</td>
<td>BCSR</td>
</tr>
<tr>
<td>Spheres</td>
<td></td>
<td>83kx83k</td>
<td>6M (72)</td>
<td>SBELL</td>
<td>SBELL</td>
</tr>
<tr>
<td>Wind</td>
<td></td>
<td>218kx218k</td>
<td>11.6M (53)</td>
<td>SBELL</td>
<td>SBELL</td>
</tr>
<tr>
<td>Harbor</td>
<td></td>
<td>47kx47k</td>
<td>2.37M (50)</td>
<td>SBELL</td>
<td>SBELL</td>
</tr>
<tr>
<td>QCD</td>
<td></td>
<td>49kx49k</td>
<td>1.9M (39)</td>
<td>SELL</td>
<td>BELL</td>
</tr>
<tr>
<td>Ship</td>
<td></td>
<td>141kx141k</td>
<td>3.98M (28)</td>
<td>SBELL</td>
<td>SBELL</td>
</tr>
<tr>
<td>Epidemiology</td>
<td></td>
<td>526kx526k</td>
<td>2.1M (4)</td>
<td>ELL</td>
<td>ELL</td>
</tr>
<tr>
<td>Accelerator</td>
<td></td>
<td>121kx121k</td>
<td>2.62M (22)</td>
<td>SELL</td>
<td>SELL</td>
</tr>
<tr>
<td>LP</td>
<td></td>
<td>4kx1.1M</td>
<td>11.3M (2825)</td>
<td>BCSR</td>
<td>BCSR</td>
</tr>
</tbody>
</table>
The performance on 11 irregular matrices
- clSpMV decides to partition the matrix into many submatrices
 - On Nvidia 480, 9 matrices are considered regular
 - The huge gap between BDIA and other formats drives clSpMV to extract more BDIA regions on matrices
- 80% better than the best single format
clSpMV Format Selection on Irregular Matrices (Radeion 6970)

<table>
<thead>
<tr>
<th>Name</th>
<th>Spyplot</th>
<th>Dimension</th>
<th>Nonzeros (nnz/row)</th>
<th>Best Single Format</th>
<th>clSpMV Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td></td>
<td>36kx36k</td>
<td>4.3M (119)</td>
<td>SBELL</td>
<td>BDIA(43%)SBELL(57%)</td>
</tr>
<tr>
<td>Cantilever</td>
<td></td>
<td>62kx62k</td>
<td>4M (65)</td>
<td>DIA</td>
<td>BDIA(90%)ELL(10%)</td>
</tr>
<tr>
<td>Economics</td>
<td></td>
<td>207kx207k</td>
<td>1.27M (6)</td>
<td>SELL</td>
<td>ELL(81%)COO(19%)</td>
</tr>
<tr>
<td>Circuit</td>
<td></td>
<td>171kx171k</td>
<td>959k (6)</td>
<td>COO</td>
<td>ELL(84%)COO(16%)</td>
</tr>
<tr>
<td>Webbase</td>
<td></td>
<td>1Mx1M</td>
<td>3.1M (3)</td>
<td>COO</td>
<td>ELL(64%)COO(36%)</td>
</tr>
<tr>
<td>Circuit5M</td>
<td></td>
<td>5.56Mx5.56M</td>
<td>59.5M (11)</td>
<td>COO</td>
<td>DIA(9%)SELL(73%)COO(18%)</td>
</tr>
<tr>
<td>Eu-2005</td>
<td></td>
<td>863Kx863K</td>
<td>19M (22)</td>
<td>COO</td>
<td>SELL(85%)COO(15%)</td>
</tr>
<tr>
<td>Ga41As41H72</td>
<td></td>
<td>268kx268k</td>
<td>18M (67)</td>
<td>CSR</td>
<td>BDIA(18%)ELL(32%)CSR(50%)</td>
</tr>
<tr>
<td>in-2004</td>
<td></td>
<td>1.38Mx1.38M</td>
<td>17M (12)</td>
<td>COO</td>
<td>SELL(79%)COO(21%)</td>
</tr>
<tr>
<td>mip1</td>
<td></td>
<td>66Kx66K</td>
<td>10M (152)</td>
<td>BCSR</td>
<td>SBELL(80%)SELL(17%)COO(3%)</td>
</tr>
<tr>
<td>Si41Ge41H72</td>
<td></td>
<td>186kx186k</td>
<td>15M (81)</td>
<td>SBELL</td>
<td>BDIA(15%)ELL(27%)CSR(58%)</td>
</tr>
</tbody>
</table>
clSpMV Format Selection on Different Platforms

<table>
<thead>
<tr>
<th>Name</th>
<th>clSpMV on GTX 480</th>
<th>clSpMV on Radeon 6970</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense</td>
<td>BCSR</td>
<td>BCSR</td>
</tr>
<tr>
<td>Protein</td>
<td>SBELL</td>
<td>BDIA(43%) SBELL(57%)</td>
</tr>
<tr>
<td>Spheres</td>
<td>SBELL</td>
<td>SBELL</td>
</tr>
<tr>
<td>Cantilevel</td>
<td>SBELL</td>
<td>BDIA(90%) ELL(10%)</td>
</tr>
<tr>
<td>Wind</td>
<td>SBELL</td>
<td>SBELL</td>
</tr>
<tr>
<td>Harbor</td>
<td>SBELL</td>
<td>SBELL</td>
</tr>
<tr>
<td>QCD</td>
<td>ELL</td>
<td>BELL</td>
</tr>
<tr>
<td>Ship</td>
<td>SBELL</td>
<td>SBELL</td>
</tr>
<tr>
<td>Economics</td>
<td>ELL(81%) COO(19%)</td>
<td>ELL(88%) COO(12%)</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>ELL</td>
<td>ELL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>clSpMV on GTX 480</th>
<th>clSpMV on Radeon 6970</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerator</td>
<td>SELL</td>
<td>SELL</td>
</tr>
<tr>
<td>Circuit</td>
<td>ELL(84%) COO(16%)</td>
<td>ELL(88%) COO(12%)</td>
</tr>
<tr>
<td>Webbase</td>
<td>ELL(64%) COO(36%)</td>
<td>ELL(70%) COO(30%)</td>
</tr>
<tr>
<td>LP</td>
<td>BCSR</td>
<td>BCSR</td>
</tr>
<tr>
<td>Circuit5M</td>
<td>DIA(9%) SELL(73%) COO(18%)</td>
<td>SELL(82%) COO(18%)</td>
</tr>
<tr>
<td>Eu-2005</td>
<td>SELL(85%) COO(15%)</td>
<td>ELL(83%) COO(17%)</td>
</tr>
<tr>
<td>Ga41As41H72</td>
<td>BDIA(18%) ELL(32%) CSR(50%)</td>
<td>BDIA(18%) ELL(32%) CSR(50%)</td>
</tr>
<tr>
<td>in-2004</td>
<td>SELL(79%) COO(21%)</td>
<td>SBELL(28%) ELL(53%) COO(19%)</td>
</tr>
<tr>
<td>mip1</td>
<td>SBELL(80%) SELL(17%) COO(3%)</td>
<td>BDIA(20%) SBELL(62%) SELL(14%) COO(4%)</td>
</tr>
<tr>
<td>Si41Ge41H72</td>
<td>BDIA(15%) ELL(27%) CSR(58%)</td>
<td>BDIA(15%) SBELL(85%)</td>
</tr>
</tbody>
</table>
Outline

- Motivation
- The Cocktail Sparse Matrix Format
- The clSpMV Framework
- Experimental Results
- Conclusion
Conclusion

- We proposed a new format for sparse matrices: the Cocktail Format that is a composition of many matrix formats
- We developed the clSpMV framework that can automatically tune the representation and implementation of SpMV on an input matrix
 - On regular matrices, it chooses one out of 9 formats and achieves similar performance compared with the best out of the 9 formats
 - On irregular matrices, it partitions the matrix into many submatrices, represents them using the Cocktail Format, and achieves significant speedups
- The general ideas behind the Cocktail Format and the clSpMV framework are applicable to all kinds of parallel platforms
 - We can expand the framework by plugging in implementations optimized for other platforms
- Code is available at
 - http://www.eecs.berkeley.edu/~subrian/clSpMV.html
Thank You