Agenda

• A Shameless self-promotion
• Introduction to GPGPUs and Cuda Programming Model
• The Cuda Thread Hierarchy
• The Cuda Memory Hierarchy
• Mapping Cuda to Nvidia GPUs
• As much of the OpenCL information as I can get through
First: Shameless Advertising

• Kurt Keutzer and I are teaching CS194-15: Engineering Parallel Software, a new undergraduate course on parallel computing at UC Berkeley

• We'll teach everything you need to know to write efficient, correct parallel software for manycore processors

• Plenty of practical experience writing parallel code for Multi-Core CPUs and GPUs in efficiency-level languages
 – In a small video game I have been developing for this purpose

Screenshot showing an NPC object (Pink) searching a maze for its target. The navigation graph is shown in red (visited nodes) and green (unvisited nodes).
Agenda

• A Shameless self-promotion
• Introduction to GPGPUs and Cuda Programming Model
• The Cuda Thread Hierarchy
• The Cuda Memory Hierarchy
• Mapping Cuda to Nvidia GPUs
• As much of the OpenCL information as I can get through
Evolu2on of GPU Hardware

• CPU architectures have used Moore’s Law to increase:
 – The amount of on-chip cache
 – The complexity and clock rate of processors
 – Single-threaded performance of legacy workloads

• GPU architectures have used Moore’s Law to:
 – Increase the degree of on-chip parallelism and DRAM bandwidth
 – Improve the flexibility and performance of Graphics applications
 – Accelerate general-purpose Data-Parallel workloads
Cuda Programming Model Goals

- Provide an inherently scalable environment for Data-Parallel programming across a wide range of processors (Nvidia only makes GPUs, however)

- Make SIMD hardware accessible to general-purpose programmers. Otherwise, large fractions of the available execution hardware are wasted!
Cuda Goals: Scalability

- Cuda expresses many independent blocks of computation that can be run in any order
- Much of the inherent scalability of the Cuda Programming model stems from batched execution of "Thread Blocks"
- Between GPUs of the same generation, many programs achieve linear speedup on GPUs with more “Cores”
Cuda Goals: SIMD Programming

- Hardware architects love SIMD, since it permits a very space- and energy-efficient implementation.
- However, standard SIMD instructions on CPUs are inflexible, and difficult to use, difficult for a compiler to target.
- The Cuda Thread abstraction will provide programmability at the cost of additional hardware.
Cuda C Language Extensions

• Code to run on the GPU is written in standard C/C++ syntax with a minimal set of extensions:
 – Provide a MIMD Thread abstraction for SIMD execution
 – Enable specification of Cuda Thread Hierarchies
 – Synchronization and data-sharing within Thread Blocks
 – Library of intrinsic functions for GPU-specific functionality

```c
__global__ void KernelFunc(...); // define a kernel callable from host
__device__ void DeviceFunc(...); // function callable only on the device
__device__ int GlobalVar; // variable in device memory
__shared__ int SharedVar; // in per-block shared memory
KernelFunc<<<500, 128>>>(...); // 500 blocks, 128 threads each
// Thread indexing and identification
dim3 threadIdx; dim3 blockIdx; dim3 blockDim;
__syncthreads(); // thread block synchronization intrinsic
sinf, powf, atanf, ceil, min, sqrtf,... // <math.h> functionality
```
Cuda Host Runtime Support

- Cuda is inherently a Heterogeneous programming model
 - Sequential code runs in a CPU “Host Thread”, and parallel “Device” code runs on the many cores of a GPU
 - The Host and the Device communicate via a PCI-Express link
 - The PCI-E link is slow (high latency, low bandwidth): it is desirable to minimize the amount of data transferred and the number of transfers

- Allocation/Deallocation of memory on the GPU:
 - \texttt{cudaMalloc(void***, int), cudaFree(void*)}

- Memory transfers to/from the GPU:
 - \texttt{cudaMemcpy(void*,void*,int, dir)}
 - \texttt{dir is cudaMemcpy\{Host,Device\}To\{Host,Device\}}
Hello World: Vector Addition

// Compute sum of length-N vectors: C = A + B
void vecAdd (float* a, float* b, float* c, int N) {
 for (int i = 0; i < N; i++)
 c[i] = a[i] + b[i];
}

int main () {
 int N = ... ;
 float *a, *b, *c;
 a = new float[N];
 // ... allocate other arrays, fill with data

 vecAdd (a, b, c, N);
}
Hello World: Vector Addition

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) c[i] = a[i] + b[i];
}

int main () {
 int N = ... ;
 float *a, *b, *c;
 cudaMalloc (&a, sizeof(float) * N);
 // ... allocate other arrays, fill with data

 // Use thread blocks with 256 threads each
 vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}
Cuda Software Environment

- nvcc compiler works much like icc or gcc: compiles C++ source code, generates binary executable
- Nvidia Cuda OS driver manages low-level interaction with device, provides API for C++ programs
- Nvidia Cuda SDK has many code samples demonstrating various Cuda functionalities
- Library support is continuously growing:
 - CUBLAS for basic linear algebra
 - CUFFT for Fourier Transforms
 - CULapack (3rd party proprietary) linear solvers, eigensolvers, ...
- OS-Portable: Linux, Windows, Mac OS
- A lot of momentum in Industrial adoption of Cuda!

http://developer.nvidia.com/object/cuda_3_1_downloads.html
Agenda

• A Shameless self-promotion
• Introduction to GPGPUs and Cuda Programming Model
• The Cuda Thread Hierarchy
• The Cuda Memory Hierarchy
• Mapping Cuda to Nvidia GPUs
• As much of the OpenCL information as I can get through
Nvidia Cuda GPU Architecture

• I'll discuss some details of Nvidia's GPU architecture simultaneously with discussing the Cuda Programming Model
 – The Cuda Programming Model is a set of data-parallel extensions to C, amenable to implementation on GPUs, CPUs, FPGAs, ...

• Cuda GPUs are a collection of “Streaming Multiprocessors”
 – Each SM is analogous to a core of a Multi-Core CPU

• Each SM is a collection of SIMD execution pipelines (Scalar Processors) that share control logic, register file, and L1 Cache
Cuda Thread Hierarchy

- Parallelism in the Cuda Programming Model is expressed as a 4-level Hierarchy:
 - A **Stream** is a list of **Grids** that execute in-order. Fermi GPUs execute multiple Streams in parallel.
 - A **Grid** is a set of up to 2^{32} **Thread Blocks** executing the same kernel.
 - A **Thread Block** is a set of up to 1024 [512 pre-Fermi] **Cuda Threads**.
 - Each **Cuda Thread** is an independent, lightweight, scalar execution context.
 - Groups of 32 threads form **Warps** that execute in lockstep SIMD.
What is a Cuda Thread?

• Logically, each Cuda Thread is its own very lightweight independent MIMD execution context
 – Has its own control flow and PC, register file, call stack, ...
 – Can access any GPU global memory address at any time
 – Identifiable uniquely within a grid by the five integers: threadIdx.{x,y,z}, blockIdx.{x,y}

• Very fine granularity: do not expect any single thread to do a substantial fraction of an expensive computation
 – At full occupancy, each Thread has 21 32-bit registers
 – ... 1,536 Threads share a 64 KB L1 Cache / __shared__ mem
 – GPU has no operand bypassing networks: functional unit latencies must be hidden by multithreading or ILP (e.g. from loop unrolling)
What is a Cuda Warp?

• The Logical SIMD Execution width of the Cuda processor
• A group of 32 Cuda Threads that execute simultaneously
 – Execution hardware is most efficiently utilized when all threads in a warp execute instructions from the same PC.
 – If threads in a warp *diverge* (execute different PCs), then some execution pipelines go unused (predication)
 – If threads in a warp access aligned, contiguous blocks of DRAM, the accesses are *coalesced* into a single high-bandwidth access
 – Identifiable uniquely by dividing the Thread Index by 32
• Technically, warp size could change in future architectures
 – But many existing programs would break
What is a Cuda Thread Block?

• A Thread Block is a **virtualized multi-threaded core**
 – Number of scalar threads, registers, and **__shared__** memory are configured dynamically at kernel-call time
 – Consists of a number (1-1024) of Cuda Threads, who all share the integer identifiers `blockIdx.{x,y}`

• ... executing a **data parallel task** of moderate granularity
 – The cacheable working-set should fit into the 128 KB (64 KB, pre-Fermi) Register File and the 64 KB (16 KB) L1
 – Non-cacheable working set limited by GPU DRAM capacity
 – All threads in a block share a (small) instruction cache

• Threads within a block synchronize via barrier-intrinsics and communicate via fast, on-chip shared memory
What is a Cuda Grid?

- A set of Thread Blocks performing related computations
 - All threads in a single kernel call have the same entry point and function arguments, initially differing only in `blockIdx.{x,y}`
 - Thread blocks in a grid may execute any code they want, e.g. `switch (blockIdx.x) { ... }` incurs no extra penalty
- Performance portability/scalability requires many blocks per grid: 1-8 blocks execute on each SM
- Thread blocks of a kernel call must be **parallel sub-tasks**
 - Program must be valid for **any interleaving** of block executions
 - The flexibility of the memory system technically allows Thread Blocks to communicate and synchronize in arbitrary ways ...
 - E.G. Shared Queue index: **OK!** Producer-Consumer: **RISKY!**
What is a Cuda Stream?

- A sequence of commands (kernel calls, memory transfers) that execute in order.
- For multiple kernel calls or memory transfers to execute concurrently, the application must specify multiple streams.
 - Concurrent Kernel execution will only happen on Fermi
 - On pre-Fermi devices, Memory transfers will execute concurrently with Kernels

```c
cudaStream_t s0, s1;
cudaStreamCreate (&s0);  cudaStreamCreate (&s1);

cudaMemcpyAsync (a0, cpu_a0, N0*sizeof(float),
                 cudaMemcpyHostToDevice, s0);
vecAdd <<<N0/256, 256, 0, s0>>> (a0, b0, c0, N0);

cudaMemcpyAsync (a1, cpu_a1, N1*sizeof(float),
                 cudaMemcpyHostToDevice, s1);
vecAdd <<<N1/256, 256, 0, s1>>> (a1, b1, c1, N1);
```
Agenda

• A Shameless self-promotion
• Introduction to GPGPUs and Cuda Programming Model
• The Cuda Thread Hierarchy
• The Cuda Memory Hierarchy
• Mapping Cuda to Nvidia GPUs
• As much of the OpenCL information as I can get through
Cuda Memory Hierarchy

- Each Cuda Thread has private access to a configurable number of registers
 - The 128 KB (64 KB) SM register file is partitioned among all resident threads
 - The Cuda program can trade degree of thread block concurrency for amount of per-thread state
 - Registers, stack spill into (cached, on Fermi) “local” DRAM if necessary

- Each Thread Block has private access to a configurable amount of scratchpad memory
 - The Fermi SM’s 64 KB SRAM can be configured as 16 KB L1 cache + 48 KB scratchpad, or vice-versa*
 - Pre-Fermi SM’s have 16 KB scratchpad only
 - The available scratchpad space is partitioned among resident thread blocks, providing another concurrency-state tradeoff

* selected via cudaFuncSetCacheConfig()
Cuda Memory Hierarchy

• Thread blocks in all Grids share access to a large pool of “Global” memory, separate from the Host CPU’s memory.
 – Global memory holds the application’s persistent state, while the thread-local and block-local memories are temporary
 – Global memory is much more expensive than on-chip memories: $O(100)x$ latency, $O(1/50)x$ (aggregate) bandwidth

• On Fermi, Global Memory is cached in a 768KB shared L2
Cuda Memory Hierarchy

• There are other read-only components of the Memory Hierarchy that exist due to the Graphics heritage of Cuda.

• The 64 KB Cuda Constant Memory resides in the same DRAM as global memory, but is accessed via special read-only 8 KB per-SM caches.

• The Cuda Texture Memory also resides in DRAM and is accessed via small per-SM read-only caches, but also includes interpolation hardware.
 – This hardware is crucial for graphics performance, but only occasionally is useful for general-purpose workloads.

• The behaviors of these caches are highly optimized for their roles in graphics workloads.
Cuda Memory Hierarchy

- Each Cuda device in the system has its own Global memory, separate from the Host CPU memory
 - Allocated via cudaMalloc()/cudaFree() and friends
- Host ↔ Device memory transfers are via cudaMemcpy() over PCI-E, and are extremely expensive
 - microsecond latency, ~GB/s bandwidth
- Multiple Devices managed via multiple CPU threads
Thread-Block Synchronization

• Intra-block barrier instruction __syncthreads() for synchronizing accesses to __shared__ and global memory
 – To guarantee correctness, must __syncthreads() before reading values written by other threads
 – All threads in a block must execute the same __syncthreads(), or the GPU will hang (not just the same number of barriers !)

• Additional intrinsics worth mentioning here:
 – int __syncthreads_count(int), int __syncthreads_and(int), int __syncthreads_or(int)

```c
extern __shared__ float T[];
__device__ void
transpose (float* a, int lda){
    int i = threadIdx.x, j = threadIdx.y;
    T[i + lda*j] = a[i + lda*j];
    __syncthreads();
    a[i + lda*j] = T[j + lda*i];
}
```
Using per-block shared memory

- The per-block shared memory / L1 cache is a crucial resource: without it, the performance of most Cuda programs would be hopelessly DRAM-bound
- Block-shared variables can be declared statically:
  ```c
  __shared__ int begin, end;
  ```
- Software-managed scratchpad is allocated statically:
  ```c
  __shared__ int scratch[128];
  scratch[threadIdx.x] = ...;
  ```
- ... or dynamically:
  ```c
  extern __shared__ int scratch[];
  
  kernel_call <<< grid_dim, block_dim, scratch_size >>> ( ... );
  ```
- Most intra-block communication is via shared scratchpad:
  ```c
  scratch[threadIdx.x] = ...;
  __syncthreads();
  int left = scratch[threadIdx.x - 1];
  ```
Using per-block shared memory

• Each SM has 64 KB of private memory, divided 16KB/48KB (or 48KB/16KB) into software-managed scratchpad and hardware-managed, non-coherent cache
 – Pre-Fermi, the SM memory is only 16 KB, and is usable only as software-managed scratchpad
• Unless data will be shared between Threads in a block, it should reside in registers
 – On Fermi, the 128 KB Register file is twice as large, and accessible at higher bandwidth and lower latency
 – Pre-Fermi, register file is 64 KB and equally fast as scratchpad
Shared Memory Bank Conflicts

• Shared memory is **banked**: it consists of 32 (16, pre-Fermi) independently addressable 4-byte wide memories
 – Addresses interleave: `float *p` points to a float in bank `k`, `p+1` points to a float in bank `(k+1) mod 32`

• Each bank can satisfy a single 4-byte access per cycle.
 – A **bank conflict** occurs when two threads (in the same warp) try to access the same bank in a given cycle.
 – The GPU hardware will execute the two accesses serially, and the warp's instruction will take an extra cycle to execute.

• Bank conflicts are a second-order performance effect: even serialized accesses to on-chip shared memory is faster than accesses to off-chip DRAM
Shared Memory Bank Conflicts

- Figure G-2 from Cuda C Programming Gude 3.1
- Unit-Stride access is **conflict-free**
- Stride-2 access: thread n conflicts with thread $16+n$
- Stride-3 access is **conflict-free**
Shared Memory Bank Conflicts

- Three more cases of conflict-free access
 - Figure G-3 from Cuda C Programming Gude 3.1
- Permutations within a 32-float block are OK
- Multiple threads reading the same memory address
- All threads reading the same memory address is a broadcast
 Atomic Memory Operations

• Cuda provides a set of instructions which execute atomically with respect to each other
 – Allow non-read-only access to variables shared between threads in shared or global memory
 – Substantially more expensive than standard load/stores
 – With voluntary consistency, can implement e.g. spin locks!

```c
int atomicAdd (int*, int), float atomicAdd (float*, float), ...
...  
int atomicMin (int*, int), ...
...  
int atomicExch (int*, int), float atomicExch (float*, float), ...
int atomicCAS (int*, int compare, int val), ...
```
Voluntary Memory Consistency

• By default, you cannot assume memory accesses are occur in the same order specified by the program
 – Although a thread's *own* accesses appear to that thread to occur in program order
• To enforce ordering, use *memory fence* instructions
 – `__threadfence_block()`: make all previous memory accesses visible to all other threads *within the thread block*
 – `__threadfence()`: make previous *global* memory accesses visible to all other threads *on the device*
• Frequently must also use the *volatile* type qualifier
 – Has same behavior as CPU C/C++: the compiler is forbidden from register-promoting values in volatile memory
 – Ensures that pointer dereferences produce load/store instructions
 – Declared as *volatile float* `*p`; `*p` must produce a memory ref.
Agenda

• A Shameless self-promotion
• Introduction to GPGPUs and Cuda Programming Model
• The Cuda Thread Hierarchy
• The Cuda Memory Hierarchy
• Mapping Cuda to Nvidia GPUs
• As much of the OpenCL information as I can get through
Mapping Cuda to Nvidia GPUs

• Cuda is designed to be "functionally forgiving": Easy to get correct programs running. The more time you invest in optimizing your code, the more performance you will get.

• Speedup is possible with a simple "Homogeneous SPMD" approach to writing Cuda programs.

• Achieving performance requires an understanding of the hardware implementation of Cuda.
Mapping Cuda to Nvidia GPUs

- Scalar Thread \Leftrightarrow SIMD Lane
- Warp \Leftrightarrow SIMD execution granularity
- Thread Block \Leftrightarrow Streaming Multiprocessor
- Grid \Leftrightarrow Multiple SMs
- Set of Streams \Leftrightarrow Whole GPU
Mapping Cuda to Nvidia GPUs

- Scalar Thread ↔ SIMD Lane
- Warp ↔ Logical SIMD width
- Thread Block ↔ Streaming Multiprocessor
- Grid ↔ Multiple SMs
- Set of Streams ↔ Whole GPU
Mapping Cuda to Nvidia GPUs

- Scalar Thread ↔ SIMD Lane
- Warp ↔ Logical SIMD width
- Thread Block ↔ Streaming Multiprocessor
- Grid ↔ Multiple SMs
- Set of Streams ↔ Whole GPU
Mapping Cuda to Nvidia GPUs

- Scalar Thread ↔ SIMD Lane
- **Warp ↔ Logical SIMD width**
- Thread Block ↔ Streaming Multiprocessor
- Grid ↔ Multiple SMs
- Set of Streams ↔ Whole GPU
Mapping Cuda to Nvidia GPUs

- Scalar Thread ⇔ SIMD Lane
- Warp ⇔ SIMD execution granularity
- Thread Block ⇔ Streaming Multiprocessor
- Grid ⇔ Multiple SMs
- Set of Streams ⇔ Whole GPU
Mapping Cuda to Nvidia GPUs

- Scalar Thread ↔ SIMD Lane
- Warp ↔ Logical SIMD width
- Thread Block ↔ Streaming Multiprocessor
- Grid ↔ Multiple SMs
- Set of Streams ↔ Whole GPU
Mapping Cuda to Nvidia GPUs

- Scalar Thread \Leftrightarrow SIMD Lane
- Warp \Leftrightarrow Logical SIMD width
- Thread Block \Leftrightarrow Streaming Multiprocessor
- Grid \Leftrightarrow Multiple SMs
- Set of Streams \Leftrightarrow Whole GPU
Mapping Cuda to Nvidia GPUs

- Each level of the GPU's processor hierarchy is associated with a memory resource
 - Scalar Threads / Warps: Subset of register file
 - Thread Block / SM: shared memory (I1 Cache)
 - Multiple SMs / Whole GPU: Global DRAM

- Massive multi-threading is used to hide latencies: DRAM access, functional unit execution, PCI-E transfers

- A highly performing Cuda program must carefully trade resource usage for concurrency
 - More registers per thread ⇔ fewer threads
 - More shared memory per block ⇔ fewer blocks
Memory, Memory, Memory

• A many core processor \(\equiv \) A device for turning a compute bound problem into a memory bound problem
 – Memory concerns dominate performance tuning!
• Memory is SIMD too! The memory systems of CPUs and GPUs alike require memory to be accessed in aligned blocks
 – Sparse accesses waste bandwidth!

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array}
\]

2 words used, 8 words loaded:
\(\frac{1}{4} \) effective bandwidth

– Unaligned accesses waste bandwidth!

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array}
\]

4 words used, 8 words loaded:
\(\frac{1}{2} \) effective bandwidth
Cuda Summary

• The Cuda Programming Model provides a general approach to organizing Data Parallel programs for heterogeneous, hierarchical platforms
 – Currently, the only production-quality implementation is Cuda for C/C++ on Nvidia's GPUs
 – But Cuda notions of "Scalar Threads", "Warps", "Blocks", and "Grids" can be mapped to other platforms as well!

• A simple "Homogenous SPMD" approach to Cuda programming is useful, especially in early stages of implementation and debugging
 – But achieving high efficiency requires careful consideration of the mapping from computations to processors, data to memories, and data access patterns