A Specialization Framework for Audio Content Analysis

Katya Gonina
with Henry Cook, Eric Battenberg, Gerald Friedland* and Kurt Keutzer

UC Berkeley ParLab, *International Computer Science Institute

January 18, 2012
Parallel processing is here

“This shift toward increasing parallelism is not a triumphant stride forward based on breakthroughs in novel software and architectures for parallelism; instead, this plunge into parallelism is actually a retreat from even greater challenges that thwart efficient silicon implementation of traditional uniprocessor architectures.”

- The Berkeley View [1]

Writing Fast Code is Hard

Dense Matrix Multiply (V. Volkov)

Fraction of Arithmetic Peak vs. Dimension of Matrices

- **ACML (vendor-provided binary)**
 - an optimized code
 - (unrolling, explicit vectorization, few levels of blocking)
 - naïve blocking
Finding Best Implementation is Hard

Best performing

900 MHz Itanium 2, Intel C v8: ref=275 Mflop/s

Autotuning to find parameters for best performance

Naïve implementation

Figure from R. Vuduc
- Domain experts prefer to use high-level languages such as Python or MATLAB.
- However, to achieve sufficient performance, computationally-intensive parts of applications must be rewritten in low-level languages.
- Parallel platform and input parameters determine the best-performing parallel implementation.
Application domain experts make design trade-offs without full view of parallel performance implications.

Expert parallel programmer with limited knowledge of application design trade-offs.
1. Parallelism & productivity-performance gap
2. Proposed solution: Just-in-time specialization
3. Example: Gaussian mixture model (GMM) training specializer
4. Example applications using GMM specializer:
 1. Speaker diarization
 2. Music recommendation system
5. Summary
6. Future Work
Selective Embedded Just-In-Time Specialization (SEJITS)

Key Idea: Generate, compile, and execute high performance parallel code at runtime using code transformation, introspection, variant selection and other features of high-level languages [2].

In invisibly to the user.

Selective Embedded JIT Specialization (SEJITS)

- Productivity-level language (PLL), e.g. Python for applications
- "Specializers" generate efficiency-level language (ELL) code targeted to hardware
 - Specialize specific computation
 - Code generation happens at runtime
 - Specializers can incorporate autotuning
- ELL performance with PLL effort
Selective Embedded JIT Specialization (SEJITS)

Asp – A SEJITS for Python [3]

Impact for programmers

- **For productivity programmers**
 - Efficient performance from high-level language
 - Further improvements in performance as specializers are added/refined
 - More programmers can exploit parallel architectures
 - Application code far more *portable & maintainable*

- **For parallel programming experts**
 - Provide useful common infrastructure for creating fast specializers
 - Wider impact & code reuse
Audio Content Analysis Applications

- Pattern recognition and information extraction from audio files

- Have impact on a big market
- Are computationally demanding
- Require processing large sets of data
- Have specific throughput and real-time constraints
Outline

1. Parallelism & productivity-performance gap
2. Proposed solution: Just-in-time specialization
3. Example: Gaussian mixture model (GMM) training specializer
4. Example applications using GMM specializer:
 1. Speaker diarization
 2. Music recommendation system
5. Summary
6. Future Work
Gaussian Mixture Model (GMM)

- Probabilistic model for clustering data
 - Assumes the distribution of observations follows a set (mixture) of multidimensional Gaussian distributions
 - Each Gaussian in the mixture has a mean \(\mu_i \) and a covariance \(\Sigma_i \) parameters
 - Gaussians in the mixture are weighted with weight \(\pi_i \)

\[
p(x_j | \mu_i, \Sigma_i) = \sum_i \pi_i \frac{1}{(2\pi)^{D/2} |\Sigma_i|^{1/2}} \exp\left\{ -\frac{1}{2} (x_j - \mu_i)^T \Sigma_i^{-1} (x_j - \mu_i) \right\}
\]
GMM Training using EM Algorithm

- Given a set of observations/events – find the maximum likelihood estimates of the set of Gaussian Mixture parameters \((\mu, \Sigma, p)\) and classify observations.

- Expectation Maximization (EM) Algorithm
 - E step
 - Compute probabilities of events given model parameters
 - M step
 - Compute model parameters given probabilities
 - weights, mean, **covariance matrix**
 - Iterate until convergence

- Covariance matrix – most computationally intensive step

Covariance Matrix Computation

- N – number of feature vectors, $\sim 10K-1M$
- D – feature vector dimension, $\sim 10-100$
- M – number of Gaussian components, $\sim 1-128$
- Matrix is symmetric – only compute the lower $D\times D/2$ cells

\[
\Sigma_i^{(k+1)} = \frac{\sum_{j=1}^{N} p_{i,j} (x_j - \mu_i^{(k+1)})^T (x_j - \mu_i^{(k+1)})}{\sum_{j=1}^{N} p_{i,j}}
\]
Opportunities for parallelism (independent computations):

- Each component’s covariance matrix
- Each cell in a covariance matrix
- Each feature vector’s contribution to a cell in a covariance matrix

-> **Multiple code variants** to perform the same computation in different ways (here: on Nvidia GPUs)
CUDA is a recent programming model, designed for
- Manycore (GPU) architectures
- Wide vector (SIMD*) parallelism
- Scalability

CUDA provides:
- A thread abstraction to deal with SIMD
- Synchronization & data sharing between small groups of threads

CUDA programs are written in C + extensions

*SIMD = “Single Instruction, Multiple Data”
Threads and Thread blocks

- Parallel **kernels** composed of many **threads**
 - all threads execute the same sequential program
- Kernels:
 - Invoked from “Host” CPU code (C)
 - Executed on the “Device” GPU

- Threads are grouped into **thread blocks**
 - threads in the same block can cooperate

- Threads/blocks have unique IDs
- Two levels of parallelism:
 - Cores
 - CUDA thread block
 - SIMD vector lanes within the core
 - CUDA threads
- Per-core local memory
 - Software Programmable
 - Shared by all threads in a thread block

Nvidia GTX480 (Fermi) Die Photo
- Code variant 1:
 - 2D grid of thread blocks $M \times D^2/2$
 - Each thread block is responsible for computing **one cell** in the covariance matrix for **one component**
 - Thread parallelization over feature vectors (N)
Covariance Matrix Computation – Code Variants

V1
for each component m in M comps
for each cell c in DxD/2 cells
add nth contribution to c of m

V2
for each cell c in DxD/2 cells
for each f n in N features
for each component m in M comps
add nth contribution to c of m
Covariance Matrix Computation – Code Variants Summary

V1

for each component \(m \) in \(M \) comps
for each cell \(c \) in \(D \times D / 2 \) cells
for each \(f_n \) in \(N \) features
add nth contribution to \(c \) of \(m \)

V2

for each cell \(c \) in \(D \times D / 2 \) cells
for each \(f_n \) in \(N \) features
add nth contribution to \(c \) of \(m \)

V3

for each component \(m \) in \(M \) comps
for each cell \(c \) in \(D \times D / 2 \) cells
for each \(f_n \) in \(N \) features
add nth contribution to \(c \) of \(m \)

V4

for each block \(b \) in \(B \) feature blocks
for each component \(m \) in \(M \) comps
for each cell \(c \) in \(D \times D / 2 \) cells
for each \(f_n \) in \(N / B \) features
add nth contribution to \(c \) of \(m \)
for each component \(m \) in \(M \) comps
for each block \(b \) in \(B \) feature blocks
sum partial contributions to \(m \) from \(b \)
Specialization

- **Given:**
 - Problem Dimensions \((N, D, M)\)
 - Platform Parameters (targeting Nvidia GPUs)
 - Core count, local memory size, SIMD width...

- **Automatically select:**
 - Optimal code variant
 - Optimal parameters (block size, number of blocks) for that code variant
Python on Host

X = Read in data

gmm = GMM()

gmm.train(X)

CUDA on GPU

Template files

C sources

CUDA sources

.so’s

C on Host

Train(){
 for(){
 launch
 launch
 launch
 }
}

kernel

kernel

kernel

kernel
Results – Code Variant Performance

GTX285

<table>
<thead>
<tr>
<th>GPU</th>
<th>SMs</th>
<th>SIMD</th>
<th>Sh_mem Size</th>
<th>DRAM Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTX480</td>
<td>14</td>
<td>32</td>
<td>48KB</td>
<td>3GB</td>
</tr>
<tr>
<td>GTX285</td>
<td>30</td>
<td>8</td>
<td>16KB</td>
<td>1GB</td>
</tr>
</tbody>
</table>
Results - Code Variant Selection

- **32%** average improvement in covariance matrix computation time using best code variant
 - compared to always using original hand-coded variant
 - D: 1 to 36, M: 1 to 128, N: 10K to 150K
- Performance gap increases with larger problem sizes
 - 75.6% for D=36, M=128, N=500,000
Results – Specializer Overhead

- Initial invocation – 81% overhead due to compiler invocations
- Future runs using automatically determined optimal code variant achieve 17% performance *improvement* over the original GPU implementation (V1)
1. Parallelism & productivity-performance gap
2. Proposed solution: a Specialization Framework
3. Example: Gaussian mixture model (GMM) training specializer
4. Example applications using GMM specializer:
 1. Speaker diarization
 2. Music recommendation system
5. Summary
6. Future Work
Speaker Diarization

Audio track:

Segmentation:

Clustering:

Speaker A Speaker B Speaker C Sp. A Speaker B

Estimate “who spoke when” with no prior knowledge of speakers, #of speakers, words, or language spoken.
Speaker Diarization: Core Algorithm

- Start with too many clusters (initialized randomly)
- Purify clusters by comparing and merging similar clusters
- Resegment and repeat until no more merging needed

Agglomerative Hierarchical Clustering of GMMs using Bayesian Information Criterion (BIC)

- \(N = 100K-600K \)
- \(D = 19 \)
- \(M = 5-80 \)
def AHC(self):
 # Get the events, divide them into an initial k clusters and train each GMM on a cluster
 per_cluster = self.N/self.init_num_clusters
 init_training = zip(self.gmm_list, np.vsplit(self.X, range(per_cluster, self.N, per_cluster)))
 for g, x in init_training:
 g.train(x)

 # Perform hierarchical agglomeration based on BIC scores
 best_BIC_score = 1.0
 while (best_BIC_score > 0 and len(self.gmm_list) > 1):
 num_clusters = len(self.gmm_list)

 # Regenerate data based on likelihood scoring
 likelihoods = self.gmm_list[0].score(self.X)
 for g in self.gmm_list[1:]
 likelihoods = np.column_stack((likelihoods, g.score(self.X)))
 most_likely = np.argmax(likelihoods)

 # Across 2.5 secs of observation, vote on which cluster they should be associated with
 split_events = split_events_based_on_votes(most_likely, self.X)

 # Score all pairs of GMMs using BIC
 best_merged_gmm = None
 best_BIC_score = 0.0
 merged_tuple = None

 for gmm1idx in range(len(self.iter_bic_list)):
 for gmm2idx in range(gmm1idx+1, len(self.iter_bic_list)):
 g1, d1 = self.iter_bic_list[gmm1idx]
 g2, d2 = self.iter_bic_list[gmm2idx]
 score = 0.0
 new_gmm, score = compute_distance_BIC(g1, g2, np.concatenate((d1, d2)))
 if score > best_BIC_score:
 best_merged_gmm = new_gmm
 merged_tuple = (g1, g2)
 best_BIC_score = score

 self.gmm_list.remove(merged_tuple[0])
 self.gmm_list.remove(merged_tuple[1])
 self.gmm_list.append(best_merged_gmm)
def AHC(self):
 # Get the events, divide them into an initial k clusters and train each GMM on a cluster per cluster
 L = new_gmm_list(M,D)

 for g in L:
 g.train(x)

 # Perform hierarchical agglomeration based on BIC scores
 while (best_BIC_score > 0 and len(self.gmm_list) > 1):
 num_clusters = len(self.gmm_list)
 # Regenerate data based on likelihood scoring
 likelihoods = self.gmm_list[0].score(self.X)
 for g in self.gmm_list[1:]
 likelihoods = np.column_stack([likelihoods, g.score(X)])
 most_likely = np.argmax(likelihoods, axis=1)

 # Across 2.5 secs of observations, vote on which cluster they should be associated with
 for g in L:
 g.train(x)

 # Score all pairs of GMMs using BIC
 best_merged_gmm = None
 best_BIC_score = 0
 merged_tuple = None

 for g1idx in range(len(iter bic_list)):
 for g2idx in range(g1idx+1, len(iter bic_list)):
 g1, d1 = iter bic list[g1idx]
 g2, d2 = iter bic list[g2idx]
 score = 0
 if s:
 atenote((d1, d2))
 best_BIC_score = score

 # Merge the winning candidate pair
 if best_BIC_score > 0.0:
 self.gmm_list.remove(merged_tuple)
 self.gmm_list.remove(merged_tuple)
 self.gmm_list.append(best merged gmm)
Speaker Diarization in Python

Python

def AHC(self):
 # Get the events, divide them into an initial k clusters, and topic each GMM on a cluster
 per_cluster = init(k)
 for g in self.gmm_list:
 g.train(x)

 # Perform hierarchical agglomeration based on BIC scores
 best_BIC_score = 1.0
 while (best_BIC_score > 0 and len(self.gmm_list) > 1):
 num_clusters = len(self.gmm_list)

 # Regenerate data based on likelihood scoring
 likelihoods = self.gmm_list[0].score(x)
 for g in self.gmm_list[1:]:
 likelihoods = np.column_stack((likelihoods, g.score(self.X)))
 most_likely = likelihoods.argmax(axis=1)

 # Across 2.5 sec of observations, vote on which cluster they should be associated with
 for i in most_likely:
 x[i] = self.X[i, g.train(x)]

 # Score all pairs of GMMs using BIC
 best_merged_gmm = None
 best_BIC_score = 0.0
 merged_tuple = None

 for g1idx in range(len(self.gmm_list) - 1):
 for g2idx in range(g1idx + 1, len(self.gmm_list)):
 g1, d1 = self.gmm_list[g1idx]
 g2, d2 = self.gmm_list[g2idx]
 score = 0.0
 new_gmm, score = compute_distance_BIC(g1, g2, np.concatenate((d1, d2)))
 if score > best_BIC_score:
 best_merged_gmm = new_gmm
 best_BIC_score = score

 # Merge the winning candidate pair
 if best_BIC_score > 0.0:
 self.gmm_list.remove(merged_tuple[0])
 self.gmm_list.remove(merged_tuple[1])
 self.gmm_list.append(best_merged_gmm)

C

...
Speaker Diarization in Python

```python
def AHC(self):
    # Get the events, divide them into an initial k clusters and train each GMM on a cluster
    per_cluster = self.N/self.init_num_clusters
    init_training = map(self.gmm_list, range(per_cluster, self.N, per_cluster))
    for g, x in init_training:
        g.train(x)

    # Perform hierarchical agglomeration based on BIC scores
    best_BIC_score = 1.0
    while (best_BIC_score > 0 and len(self.gmm_list) > 1):
        num_clusters = len(self.gmm_list)
        # Resegment data based on likelihood scoring
        likelihoods = self.gmm_list[k].score(self.X)
        for g in self.gmm_list:
            likelihoods = np.column_stack((likelihoods, g.scores))
        most_likely = likelihoods.argmax(axis=1)
        # Across 2.5 secs of observations, vote on which cluster to split
        split_events = split_events_based_on_votes(most_likely, x)
        for g, data in split_events:
            g.train(data)
        # Score all pairs of GMMs using BIC
        best_merged_gmm = None
        best_BIC_score = 0.0
        merged tuples = None
        for g1idx in range(len(self.gmm_list[0])):
            for g2idx in range(g1idx+1, len(self.gmm_list[0])):
                g1, d1 = self.gmm_list[g1idx]
                g2, d2 = self.gmm_list[g2idx]
                score = 0.0
                new_gmm, score = compute_distance_BIC(g1, g2, np.concatenate([d1, d2]))
                if score > best_BIC_score:
                    best_merged_gmm = new_gmm
                    merged_tuple = (g1, g2)
                    best_BIC_score = score
        # Merge the winning candidate pair
        if best_BIC_score > 0.0:
            self.gmm_list.remove(merged_tuple[0])
            self.gmm_list.remove(merged_tuple[1])
            self.gmm_list.append(best_merged_gmm)
```

15x Lines-of-code reduction
Speaker Diarization Results

Diarization Error Rate (DER) and faster-than-real-time factor for the AMI Meeting Corpus

<table>
<thead>
<tr>
<th>Meeting ID</th>
<th>FF DER</th>
<th>FF ×RT</th>
<th>NF DER</th>
<th>NF ×RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS1000a</td>
<td>40.99%</td>
<td>71.19×</td>
<td>25.38%</td>
<td>72.83×</td>
</tr>
<tr>
<td>IS1001a</td>
<td>27.38%</td>
<td>80.88×</td>
<td>32.34%</td>
<td>163.22×</td>
</tr>
<tr>
<td>IS1001b</td>
<td>41.28%</td>
<td>70.02×</td>
<td>10.57%</td>
<td>123.28×</td>
</tr>
<tr>
<td>IS1001c</td>
<td>46.83%</td>
<td>59.71×</td>
<td>28.40%</td>
<td>177.80×</td>
</tr>
<tr>
<td>IS1003b</td>
<td>41.54%</td>
<td>80.85×</td>
<td>34.30%</td>
<td>254.81×</td>
</tr>
<tr>
<td>IS1003d</td>
<td>66.89%</td>
<td>64.33×</td>
<td>50.75%</td>
<td>56.13×</td>
</tr>
<tr>
<td>IS1006b</td>
<td>29.88%</td>
<td>74.03×</td>
<td>16.57%</td>
<td>129.35×</td>
</tr>
<tr>
<td>IS1006d</td>
<td>63.68%</td>
<td>54.87×</td>
<td>53.05%</td>
<td>58.36×</td>
</tr>
<tr>
<td>IS1008a</td>
<td>2.19%</td>
<td>64.29×</td>
<td>1.65%</td>
<td>60.35×</td>
</tr>
<tr>
<td>IS1008b</td>
<td>4.99%</td>
<td>81.46×</td>
<td>8.58%</td>
<td>151.80×</td>
</tr>
<tr>
<td>IS1008c</td>
<td>32.43%</td>
<td>67.20×</td>
<td>9.30%</td>
<td>81.13×</td>
</tr>
<tr>
<td>IS1008d</td>
<td>27.84%</td>
<td>83.42×</td>
<td>26.27%</td>
<td>55.77×</td>
</tr>
<tr>
<td>Average</td>
<td>35.49%</td>
<td>71.02×</td>
<td>24.76%</td>
<td>115.40×</td>
</tr>
</tbody>
</table>

Average 71-115× Faster Than Real-Time Performance on NVIDIA Fermi GPU

Results - Portability

- Faster-than-real-time factors for:
 - Specializer on Intel Westmere (12 cores/24 threads)
 - Nvidia GTX280 & GTX480

<table>
<thead>
<tr>
<th>Mic Array</th>
<th>Py+Cilk+</th>
<th>Py+CUDA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Westmere</td>
<td>GTX285/GTX480</td>
</tr>
<tr>
<td>Near field</td>
<td>56×</td>
<td>101× / 115×</td>
</tr>
<tr>
<td>Far field</td>
<td>32×</td>
<td>68× / 71×</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GPU</th>
<th>SMs</th>
<th>SIMD</th>
<th>Sh_mem Size</th>
<th>DRAM Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTX480</td>
<td>14</td>
<td>32</td>
<td>48KB</td>
<td>3GB</td>
</tr>
<tr>
<td>GTX285</td>
<td>30</td>
<td>8</td>
<td>16KB</td>
<td>1GB</td>
</tr>
</tbody>
</table>
1. Parallelism & productivity-performance gap
2. Proposed solution: a Specialization Framework
3. Example: Gaussian mixture model (GMM) training specializer
4. Example applications using GMM specializer:
 1. Speaker diarization
 2. Music recommendation system
5. Summary
6. Future work
Content-based Music Recommendation: Pardora

- Given a query song or subset of songs – return similar songs
- Song recommendation system based on the *content* of the audio files
 - Audio segment-based features
- No need for tedious manual tagging!
- Can use any audio for querying
 - Your iTunes library?
 - Recording from a concert?
 - Humming your favorite song?
Million Song Dataset (MSD) from Columbia University:
http://labrosa.ee.columbia.edu/millionsong/

“A freely-available collection of audio features and metadata for a million contemporary popular music tracks”

1M song features & metadata
- Artist & song information
- Tags & beat information
- MFCC-like timbre features
Pardora Recommendation System

- Based on the UBM*-GMM supervector approach (IRCAM’10 [6]) (next slide)

1. Offline Phase: train UBM & song models
2. Online Phase: train query model & return top 10 closest songs

UBM* = Universal Background Model
Pardora – Offline Phase

1. Train a UBM (rhythm & timbre)
2. Adapt UBM to Compute Song Supervectors

Song Data:

songID => { tinySongID, artist_name, title, supervector_t, supervector_r}

UBM* = Universal Background Model
Pardora – Online Phase

MSD

UBM parameters
means, covariance, weights

Train Query Model

Serve Query

Query Supervector

Compute Song Distances to the Query Supervector

Song Data
songID => { tinySongID, artist_name, title, supervector_t, supervector_r}

UBM parameters

Top 10

N = 250K-2.2M
D = 12
M = 64
Pardora Performance Results

- Offline Phase: ~10 minutes
- Online Phase: 1.5-5 seconds depending on query size

![Pardora Recommendation Performance Graph](image)
1. Parallelism & productivity-performance gap
2. Proposed solution: a Specialization Framework
3. Example: Gaussian mixture model (GMM) training
 specializer
4. Example applications using GMM specializer:
 1. Speaker diarization
 2. Music recommendation system
5. Summary
6. Future work
Programming parallel processors is challenging

Selective JIT specialization can allow us to bridge the productivity-performance gap

Example: Gaussian Mixture Model specializer
 - Python-level productivity & CUDA-level performance

Two example applications:
 - Speaker Diarization (~100 lines of Python)
 - 71-115x faster-than-real-time performance
 - Music Recommendation System (~600 lines of Python)
 - Order of seconds for online recommendation

Productivity meets performance
Future Work

- Scalability of this approach for application development
 - More applications using more specializers
 - Focus on productivity & performance
- Scalability to the cloud for large datasets
 - Whole 1M songs will require cluster-level parallelism
- Autotuning and smarter code generation/selection
 - Incorporate machine learning & heuristics
- Specializer composition
 - Optimization & data structure selection
Thank you!

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (Award #DIG07-10227). Additional support comes from Par Lab affiliates National Instruments, Nokia, NVIDIA, Oracle, and Samsung.
Backup Slides
User writes code for a structured grid calculation

```python
# 3d heat equation
def kernel(inArray, outArray):
    for pt in inArray.interior():
        for x in pt.neighbors(radius=1):
            outArray[pt] += 1/6 * inArray[x]
```
When the user runs kernel(A,B):
 - Python code is transformed into optimized C code (more on that later)
 - Take into account # of cores, size of array (256^3)

```c
int c2;
for (c2=chunkOffset_2;c2<=255;c2+=128) {
    int c1;
    for (c1=chunkOffset_1;c1<=255;c1+=64) {
        int c0;
        for (c0=chunkOffset_0;c0<=255;c0+=256) {
            int b2;
            for (b2=c2 + threadOffset_2;b2<=c2 + 127;b2+=128) {
                int b1;
                for (b1=c1 + threadOffset_1;b1<=c1 + 31;b1+=16) {
                    int b0;
                    for (b0=c0 + threadOffset_0;b0<=c0 + 255;b0+=256) {
                        int kk;
                        for (kk=b2 + 1;kk<=b2 + 128;kk+=1) {
                            int jj;
                            for (jj=b1 + 1;jj<=b1 + 16;jj+=1) {
                                int ii;
                                for (ii=b0 + 1;ii<=b0 + 256;ii+=1) {
                                    dst[_dst_Index(ii - 1,jj - 1,kk - 1)] = ...;
                                }
                            }
                        }
                    }
                }
            }
        }
    }
}
```
When the user runs \texttt{kernel(A,B)}:

- Python code is transformed into optimized C code (more on that later)
- Code is output to disk
- Compiler runs, turns it into dynamic library
- Library is loaded into the interpreter
- Translated function is called & result returned to interpreter

To user, it just looks like the code ran really fast
NVIDIA GTX480 – Varying D
NVIDIA GTX285 vs. 480

<table>
<thead>
<tr>
<th>GPU</th>
<th>SMs</th>
<th>SIMD</th>
<th>Sh_mem Size</th>
<th>DRAM Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTX480</td>
<td>14</td>
<td>32</td>
<td>48KB</td>
<td>3GB</td>
</tr>
<tr>
<td>GTX285</td>
<td>30</td>
<td>8</td>
<td>16KB</td>
<td>1GB</td>
</tr>
</tbody>
</table>
- Task: recognize words and sentences from an audio file
 - Recognizing words from a large vocabulary arranged in exponentially many possible permutations
 - Inferring word boundaries from the context of neighboring words
- Viterbi decoding on Hidden Markov Models

Example: Speech Recognition

Features from one frame

Gaussian Mixture Model for One Phone State

HMM Acoustic Phone Model

Compiled HMM Recognition Network

Pronunciation Model

Bigram Language Model
My Previous Work (1)

Fully-parallel Speech Recognition Decoder

- Efficient multicore and manycore implementations of entire decoder (InterSpeech’09)

- Exploring
 - Algorithmic-level design space (IEEE SP Journal 2009)
 - Recognition network representation (InterSpeech’11)

![Decoding Time Per Second of Speech (s)]

<table>
<thead>
<tr>
<th></th>
<th>Decoding Time Per Second of Speech (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential</td>
<td>4.0</td>
</tr>
<tr>
<td>Multicore</td>
<td>3.4x</td>
</tr>
<tr>
<td>Manycore</td>
<td>10.5x</td>
</tr>
</tbody>
</table>

Architecture of the inference engine:

- One iteration per time step: (~60M inst)
- Compute intensive
- Communication intensive
- Multiple steps in a phase, each has: 1000s to 10,000s concurrent tasks (10 to 500 instr.)
Specifications

<table>
<thead>
<tr>
<th></th>
<th>Core i7 960</th>
<th>GTX285</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing Elements</td>
<td>4 cores, 4 way SIMD @3.2 GHz</td>
<td>30 cores, 8 way SIMD @1.5 GHz</td>
</tr>
<tr>
<td>Resident Strands/Threads (max)</td>
<td>4 cores, 2 threads, 4 way SIMD: 32 strands</td>
<td>30 cores, 32 SIMD vectors, 32 way SIMD: 30720 threads</td>
</tr>
<tr>
<td>SP GFLOP/s</td>
<td>102</td>
<td>1080</td>
</tr>
<tr>
<td>Memory Bandwidth</td>
<td>25.6 GB/s</td>
<td>159 GB/s</td>
</tr>
<tr>
<td>Register File</td>
<td>-</td>
<td>1.875 MB</td>
</tr>
<tr>
<td>Local Store</td>
<td>-</td>
<td>480 kB</td>
</tr>
</tbody>
</table>

Core i7 (45nm)

GTX285 (55nm)
- Single Instruction Multiple Data architectures make use of data parallelism
- We care about SIMD because of area and power efficiency concerns
 - Amortize control overhead over SIMD width
- Parallelism exposed to programmer & compiler
GMM Specializer: Details

- Python application code
 - Manipulates problem data, sets up application logic
- C/CUDA code that runs quickly
 - Allocates GPU memory
 - Performs main EM iterative loop
- Specializer [5]
 - Selects appropriate code variant (from history) based on parameters
 - Pulls in the template for the code variant, parameterizes it and compiles to binary