The Meeting Diarist: An Example of Qualitative Improvements through Parallelization

Dr. Gerald Friedland
International Computer Science Institute (ICSI)
Work mainly together with:
Ekatarina Gonina, Henry Cook, Adam Janin, Armando Fox
The Meeting Diarist
Components of the Meeting Diarist

Overall Structure: Pipe & Filter
Speaker Diarization – Definition

Estimate “who spoke when” with no prior knowledge of speakers, #of speakers, words, or language spoken.
Speaker Diarization – Overview

Processing Chain:

Audio Signal

- Dynamic Range Compression
- Wiener Filtering
- Beamforming

- Short-Term Feature Extraction
 - MFCC
 - Speech/Non-Speech Detector

- Long-Term Feature Extraction
 - Prosodics (only speech)
 - EM Clustering

- Prosodics (only speech)

- Initial Segments
- MFCC (only speech)

- Segmentation
- Diarization Engine
- Clustering

"who spoke when"

Overall Structure: Pipe & Filter
Algorithm outline:

- Start with too many clusters (initialized randomly)
- Purify clusters by comparing and merging similar clusters
- Resegment and repeat until no more merging needed
Five versions (so far):

- Initial code (2006): 0.333 x realtime (i.e., 1h audio = 3h processing)
- Serially optimized (2008): 1.5 x realtime
- Parlab retreat summer 2010: Multicore+GPU parallelization: 14.3 x realtime
- Parlab retreat winter 2011: GPU-only parallelization 250 x realtime (i.e., 1h audio = 14.4sec processing)
- Parlab retreat summer 2011: SEJITized!
Speaker Diarization on GPU
Now it’s fast: So what?

- Algorithm can be tuned to leverage the “spare time” -> Higher accuracy
- Algorithm can be tuned using much more data (e.g., 50k TrecVID videos) -> Increased robustness
- AHC with GMMs interesting for other applications as well
- Now online = offline!
Imagine an offline Speaker Diarization System that responds in > 1000xRT (i.e. diarizes 1000s in 1s)...

-> Offline DER with Online latency.
Convergence at 350s per 2.5s = only 140 x realtime!

Limits of the Approach

- “Lots of brain-power” needed as it’s an efficiency layer solution

- Highly specialized: Only works on CUDA

- Feature extraction, speech/non-speech detection now bottleneck -> Needs to be addressed before solution is practical
Selective Embedded JIT Specialization (SEJITS)

ASP – A SEJITS for Python [1]

def AIC(self):

 # Get the events, divide them into an initial k clusters and train each GMM on a cluster
 per_cluster = self.N/self.init_num_clusters
 init_training = zip(self.gmm_list, np.vsplit(self.X, range(per_cluster, self.N, per_cluster)))
 for g, x in init_training:
 g.train(x)

 # Perform hierarchical agglomeration based on BIC scores
 best_BIC_score = 1.0
 while (best_BIC_score > 0 and len(self.gmm_list) > 1):

 num_clusters = len(self.gmm_list)

 # Resegment data based on likelihood scoring
 likelihoods = self.gmm_list[0].score(self.X)
 for g in self.gmm_list[1:]:
 likelihoods = np.column_stack((likelihoods, g.score(self.X)))
 most_likely = likelihoods.argmax(axis=1)

 # Across 2.5 secs of observations, vote on which cluster they should be associated with
 split_events = split_events_based_on_votes(most_likely, self.X)

 for g, data in split_events:
 g.train(data)

 # Score all pairs of GMMs using BIC
 best_merged_gmm = None
 best_BIC_score = 0.0
 merged_tuple = None

 for gmm1idx in range(len(self.gmm_list)):
 for gmm2idx in range(gmm1idx+1, len(self.gmm_list)):
 g1, d1 = self.gmm_list[gmm1idx]
 g2, d2 = self.gmm_list[gmm2idx]
 score = 0.0
 new_gmm, score = compute_distance_BIC(g1, g2, np.concatenate((d1, d2)))
 if score > best_BIC_score:
 best_merged_gmm = new_gmm
 merged_tuple = (g1, g2)
 best_BIC_score = score

 # Merge the winning candidate pair
 if best_BIC_score > 0.0:
 self.gmm_list.remove(merged_tuple[0])
 self.gmm_list.remove(merged_tuple[1])
 self.gmm_list.append(best_merged_gmm)
SEJITized Diarization

```python
def AHC(self):
    # Ge
    per_init
    for
    new_gmm_list(M,D)
    g.train(x)

    # Perform hierarchical agglomeration based on BIC scores
    best_BIC_score = 1.0
    while (best_BIC_score > 0 and len(self.gmm_list) > 1):
        num_clusters = len(self.gmm_list)

        # Resegment data based on likelihood scoring
        likelihoods = self.gmm_list[0].score(self.X)
        for g in self.gmm_list[1:]:
            likelihoods = np.column_stack((likelihoods, g.score(self.X)))
            most_likely = likelihoods.argmax(axis=1)

        # Across 2.5 secs of observations, vote on which cluster they should be associated with
        for g, split in enumerate(num_clusters):
            _on_votes(most_likely, self.X)

        # Score all pairs of GMMs using BIC
        best_merged_gmm = None
        best_BIC_score = 0.0
        merged_tuple = None

        for gmm1idx in range(len(self.iter_bic_list[0]), len(self.iter_bic_list[0] + len(self.iter_bic_list[1]))):
            for gmm2idx in range(gmm1idx, self.iter_bic_list[1]):
                g1, d1 = self.iter_bic_list[gmm1idx]
                g2, d2 = self.iter_bic_list[gmm2idx]

                score = 0.0
                new_gmm, score = combine(concatenate((d1, d2)))
                if score > best_BIC:
                    best_merged_gmm = new_gmm
                    merged_tuple = (g1, g2)
                    best_BIC_score = score

        # Merge the winning candidate pair
        if best_BIC_score > 0.0:
            self.gmm_list.remove(merged_tuple[0])
            self.gmm_list.remove(merged_tuple[1])
            self.gmm_list.append(best_merged_gmm)
```

Initialization

1. Cluster 2
2. Cluster 1
3. Cluster 2
4. Cluster 2

(Re-)Training

Yes

(Re-)Alignment

Merge two Clusters?
Conclusion

Parallelization allows for more than incremental speed-up. It introduces new possibilities on how to approach a problem.

- higher-level languages and the speed-up make experimenting easier
- the algorithm can iterate more often
- due to the speed-up, task-specific optimization can be avoided
CS298-53 (26862): Acoustic Methods for Video Analysis
Fridays, 1:30-3pm, 320 SODA

More information:
http://www.icsi.berkeley.edu/~fractor/fall2011/
Thank You!
Questions?

Contact:
Dr. Gerald Friedland
International Computer Science Insitute
email: fractor@icsi.berkeley.edu
web: http://www.gerald-friedland.org