
1 1

Open MP - Basics*

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Tim Mattson

Intel Corp.

timothy.g.mattson@intel.com

2

Outline

• Preamble: On becoming a parallel programmer

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Synchronize single masters and stuff

• Data environment

Parallel programming is really hard

• Programming is hard whether you write serial or parallel

code.

– Parallel programming is just a new wrinkle added to the already

tough problem of writing high quality, robust and efficient code.

• Why does Parallel programming seems so complex?

– The literature overwhelms with hundreds of languages/APIs and a

countless assortment of algorithms.

– Experienced parallel programmers love to tell “war stories” of

Herculean efforts to make applications scale … which can scare

people away.

– It’s new: synchronization, scalable algorithms, distributed data

structures, concurrency bugs, memory models … hard or not it’s a

bunch of new stuff to learn.

3

Third party names are the property of their owners.

But it’s really not that bad (part 1): parallel libraries

The Networking and Information Technology Research and Development (NITRD)

Source: Kathy Yelick
Source: Kathy Yelick

But its really not that bad: part 2

• Don’t let the glut of parallel programming languages confuse

you.

• Leave research languages to C.S. researchers and stick to the

small number of broadly used languages/APIs:

– Industry standards:

– Pthreads and OpenMP

– MPI

– OpenCL

– TBB (… and maybe Cilk?)

– or a broadly deployed solutions tied to your platform of choice

– CUDA (for NVIDIA platforms and PGI compilers)

– .NET and C++ AMP (Microsoft)

– For HPC programmers dreaming of Exascale … maybe a PGAS

language/API?

– UPC

– GA

5
Third party names are the property of their owners.

But its really not that bad : part 3

• Most algorithms

are based on a

modest number

of recurring

patterns (see Kurt

Kreutzer's lecture

tomorrow).

6

• Almost every parallel program is written in terms of just 7

basic patterns:

– SPMD

– Kernel Parallelism

– Fork/join

– Actors

– Vector Parallelism

– Loop Parallelism

– Work Pile

Parallel programming is easy

• So all you need to do is:

– Pick your language.

– I suggest sticking to industry standards and open source so you can

move around between hardware platforms:

7

– SPMD

– Kernel Parallelism

– Fork/join

– Actors

– Vector Parallelism

– Loop Parallelism

– Work Pile

– Learn the key 7 patterns

– Master the few patterns common to your platform and application

domain … for example, most application programmers just use

these three patterns

– SPMD – Loop Parallelism – Kernel Parallelism

– pthreads – OpenCL – OpenMP – MPI – TBB

Third party names are the property of their owners.

If you become overwhelmed during this course …

• Come back to this slide and remind yourself … things are not

as bad as they seem

8
Third party names are the property of their owners.

9

Outline

• Preamble: On becoming a parallel programmer

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Synchronize single masters and stuff

• Data environment

Recapitulation

• You know about parallel

architectures … multicore chips

have made them very common.

10

• You know about threads and

cache coherent shared address

spaces

• … and you know about the

Posix Threads API (Pthreads)

for writing multithreaded

programs.

IntelTM CoreTM i7 processor (Nehalem)

Cache A Cache A Cache B Cache B

DRAM DRAM

Core 0 Core 0 Core 1 Core 1

#include <pthread.h>

void * thrd_func (void *arg){ // thread entry point

 printf("[%d] Hello, world!\n", *(int*)arg);

}

int main (){

 pthread_t tid[10]; // thread handle

 int thrd_rank[10];

 for (int i = 0; i < 10; ++i){

 thrd_rank[i] = i;

 pthread_create (&tid[i], 0, thrd_func,

 (void*) &thrd_rank[i]);

 }

} Third party names are the property of their owners.

A simple running example: Numerical Integration


4.0

(1+x2)
dx = 

0

1

 F(xi)x  
i = 0

N

Mathematically, we know that:

We can approximate the

integral as a sum of

rectangles:

Where each rectangle has

width x and height F(xi) at

the middle of interval i.

4.0

2.0

1.0

X
0.0

PI Program: Serial version

#define NUMSTEPS = 100000;

double step;

void main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) NUMSTEPS;

 x = 0.5 * step;

 for (i=0;i<= NUMSTEPS; i++){

 x+=step;

 sum += 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

#define NUMSTEPS = 100000;

double step;

void main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) NUMSTEPS;

 x = 0.5 * step;

 for (i=0;i<= NUMSTEPS; i++){

 x+=step;

 sum += 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

PI Program: transform into a Pthreads program

Let’s turn this into a parallel program using the Pthreads API.

Package this

into a function

Assign loop

iterations to

threads

Variable to accumulate

thread results must be

shared

Assure safe update to sum …

correct for any thread schedule

Numerical Integration: PThreads (1 of 2)

Func(): the function run by the threads
#include <stdio.h>

#include <pthread.h>

#define NUMSTEPS 10000000

#define NUMTHREADS 4

double step = 0.0, Pi = 0.0; pthread_mutex_t gLock;

void *Func(void *pArg)

{

 int myRank = *((int *)pArg);

 double partialSum = 0.0, x;

 for (int i = myRank; i < NUMSTEPS; i += NUMTHREADS)

 {

 x = (i + 0.5f) * step;

 partialSum += 4.0f / (1.0f + x*x);

 }

 pthread_mutex_lock(&gLock);

 Pi += partialSum * Step;

 pthread_mutex_unlock(&gLock);

 return 0;

}

Source: Michael Wrinn of Intel

Cyclic loop distribution … deal out

loop iterations as you would a deck of

cards

Put any code you want inbetweeen

the Mutex_lock and unlock. This is

called a Critical section … only one

thread at a time can execute this code

Global variables … on the heap

Numerical Integration: PThreads (2 of 2)

The main program … managing threads
int main()

{

 pthread_t thrds[NUMTHREADS];

 int tNum[NUMTHREADS], i;

 pthread_mutex_init(&gLock, NULL);

 Step = 1.0 / NUMSTEPS;

 for (i = 0; i < NUMTHREADS; ++i)

 {

 tRank[i] = i;

 pthread_create(&thrds[i], NULL,Func,(void)&tRank[i]);

 }

 for (i = 0; i < NUMTHREADS; ++i)

 {

 pthread_join(thrds[i], NULL);

 }

 pthread_mutex_destroy(&gLock);

 printf("Computed value of Pi: %12.9f\n", Pi);

 return 0;

}
Source: Michael Wrinn of Intel

Initialize the mutex variable

Create (fork) the threads …

passing each thread its rank

Post a join for each

thread … hence waiting

for all of them to finish

before proceeding

The fork-join pattern
• This is an instance of the well

known Fork join pattern:

1. Start as a serial program.

2. When work to do in parallel is

encountered, pack it into a

function.

3. Fork a number of threads to

execute the function.

4. When the functions have

completed, the threads join back

together.

5. Program continues as a serial

program.

16

• If this pattern with such “mechanical” transformations is so common, can’t

we come up with an easier, less intrusive way for this style of programming?

• Yes we can … and its called OpenMP

17

OpenMP* Overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTER
C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded
Applications

A set of compiler directives and library routines
for parallel application programmers

Greatly simplifies writing multi-threaded (MT)
programs in Fortran, C and C++

Standardizes last 20 years of SMP practice

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

18

OpenMP Execution Model:

Fork-Join pattern:
Master thread spawns a team of threads as needed.

Parallelism added incrementally until performance goals
are met: i.e. the sequential program evolves into a
parallel program.

Parallel Regions

Master

Thread

in green

A Nested

Parallel

region

A Nested

Parallel

region

Sequential Parts

19

Example: Hello world

• Write a multithreaded program where each thread prints

“hello world”.

void main()

{

 int ID = 0;

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

}

void main()

{

 int ID = 0;

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

}

20

Example: Hello world Solution

• Tell the compiler to pack code into a function, fork the threads,

and join when done …

#include “omp.h”

void main()

{

#pragma omp parallel

 {

 int ID = omp_get_thread_num();

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

 }

}

#include “omp.h”

void main()

{

#pragma omp parallel

 {

 int ID = omp_get_thread_num();

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

 }

}

Sample Output:

hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

Sample Output:

hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

OpenMP include file OpenMP include file

Parallel region with default

number of threads

Parallel region with default

number of threads

Runtime library function to

return a thread ID.

Runtime library function to

return a thread ID. End of the Parallel region End of the Parallel region

22

OpenMP core syntax

• Most of the constructs in OpenMP are compiler
directives.

#pragma omp construct [clause [clause]…]

–Example

#pragma omp parallel num_threads(4)

• Function prototypes and types in the file:
#include <omp.h>

• Most OpenMP* constructs apply to a “structured
block”.
–Structured block: a block of one or more statements with

one point of entry at the top and one point of exit at the
bottom.

– It’s OK to have an exit() within the structured block.

24

OpenMP Overview:
How do threads interact?

• OpenMP is a multi-threading, shared address model.

–Threads communicate by sharing variables.

• Unintended sharing of data causes race conditions:

– race condition: when the program’s outcome changes as

the threads are scheduled differently.

• To control race conditions:

–Use synchronization to protect data conflicts.

• Synchronization is expensive so:

–Change how data is accessed to minimize the need for

synchronization.

25

Outline

• Preamble: On becoming a parallel programmer

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Synchronize single masters and stuff

• Data environment

27

Thread Creation: Parallel Regions

• You create threads in OpenMP* with the parallel construct.

• For example, To create a 4 thread Parallel region:

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

 int ID = omp_get_thread_num();

 pooh(ID,A);

}

 Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread

executes a

copy of the

code within

the

structured

block

Each thread

executes a

copy of the

code within

the

structured

block

Runtime function to

request a certain

number of threads

Runtime function to

request a certain

number of threads

Runtime function

returning a thread ID

Runtime function

returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

Thread Creation: Parallel Regions

• Each thread executes
the same code
redundantly.

 double A[1000];

#pragma omp parallel num_threads(4)

{

 int ID = omp_get_thread_num();

 pooh(ID, A);

}

 printf(“all done\n”);

omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single

copy of A is

shared

between all

threads.

A single

copy of A is

shared

between all

threads.

Threads wait here for all threads to finish

before proceeding (i.e. a barrier)

Threads wait here for all threads to finish

before proceeding (i.e. a barrier)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

OpenMP: what the compiler does

#pragma omp parallel num_threads(4)

{

 foobar ();

}

void thunk ()

{

 foobar ();

}

pthread_t tid[4];

for (int i = 1; i < 4; ++i)

 pthread_create (

 &tid[i],0,thunk, 0);

thunk();

for (int i = 1; i < 4; ++i)

 pthread_join (tid[i]);

 The OpenMP compiler generates code

logically analogous to that on the right

of this slide, given an OpenMP pragma

such as that on the top-left

 All known OpenMP implementations

use a thread pool so full cost of threads

creation and destruction is not incurred

for reach parallel region.

 Only three threads are created because

the last parallel section will be invoked

from the parent thread.

32

Example: Serial PI Program

static long num_steps = 100000;

double step;

void main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=0;i< num_steps; i++){

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

33

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int i, nthreads; double pi, sum[NUM_THREADS];

 step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);

 #pragma omp parallel

 {

 int i, id,nthrds;

 double x;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 if (id == 0) nthreads = nthrds;

 for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {

 x = (i+0.5)*step;

 sum[id] += 4.0/(1.0+x*x);

 }

 }

 for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i] * step;

}

Example: A simple Parallel pi program
Promote scalar to an

array dimensioned by

number of threads to

avoid race condition.

Promote scalar to an

array dimensioned by

number of threads to

avoid race condition.

This is a common

trick in SPMD

programs to create

a cyclic distribution

of loop iterations

This is a common

trick in SPMD

programs to create

a cyclic distribution

of loop iterations

Only one thread should copy

the number of threads to the

global value to make sure

multiple threads writing to the

same address don’t conflict.

Only one thread should copy

the number of threads to the

global value to make sure

multiple threads writing to the

same address don’t conflict.

34

SPMD: Single Program Mulitple Data

 Run the same program on P processing elements where P

can be arbitrarily large.

 Use the rank … an ID ranging from 0 to (P-1) … to select

between a set of tasks and to manage any shared data

structures.

This pattern is very general and has been used to support

most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is

probably the most commonly used pattern in the history of

parallel programming.

This pattern is very general and has been used to support

most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is

probably the most commonly used pattern in the history of

parallel programming.

Results*

35

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW

thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

threads 1st

SPMD

1 1.86

2 1.03

3 1.08

4 0.97

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

36

Why such poor scaling? False sharing
• If independent data elements happen to sit on the same cache line, each

update will cause the cache lines to “slosh back and forth” between threads

… This is called “false sharing”.

• If you promote scalars to an array to support creation of an SPMD program,

the array elements are contiguous in memory and hence share cache lines

… Results in poor scalability.

• Solution: Pad arrays so elements you use are on distinct cache lines.

Sum[0] Sum[1] Sum[2] Sum[3] Sum[0] Sum[1] Sum[2] Sum[3]
Core 0 Core 1

L1 $ lines L1 $ lines

HW thrd. 0 HW thrd. 1 HW thrd. 2 HW thrd. 3

Shared last level cache and connection to I/O and DRAM

39

Outline

• Preamble: On becoming a parallel programmer

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Synchronize single masters and stuff

• Data environment

40

Discussed

later

Discussed

later

Synchronization

• High level synchronization:

– critical

– atomic

– barrier

– ordered

• Low level synchronization

– flush

– locks (both simple and nested)

Synchronization is used

to impose order

constraints and to

protect access to shared

data

Synchronization is used

to impose order

constraints and to

protect access to shared

data

41

Synchronization: critical

• Mutual exclusion: Only one thread at a time can enter a
critical region.

float res;

#pragma omp parallel

{ float B; int i, id, nthrds;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 for(i=id;i<niters;i+=nthrds){

 B = big_job(i);

#pragma omp critical

 res += consume (B);

 }

}

Threads wait

their turn – only

one at a time

calls consume()

Threads wait

their turn – only

one at a time

calls consume()

42

Synchronization: Atomic (basic form)

• Atomic provides mutual exclusion but only applies to the
update of a memory location (the update of X in the following
example)

#pragma omp parallel

{

 double tmp, B;

 B = DOIT();

 tmp = big_ugly(B);

 #pragma omp atomic

 X += tmp;

}

Additional forms of atomic were added in OpenMP 3.1.

We will discuss these later.

The statement inside the

atomic must be one of the

following forms:

• x binop= expr

• x++

• ++x

• x—

• --x

X is an lvalue of scalar type

and binop is a non-overloaded

built in operator.

43

Synchronization: Barrier

• Barrier: Each thread waits until all threads arrive.

#pragma omp parallel shared (A, B, C) private(id)

{

 id=omp_get_thread_num();

 A[id] = big_calc1(id);

#pragma omp barrier

#pragma omp for

 for(i=0;i<N;i++){C[i]=big_calc3(i,A);}

#pragma omp for nowait

 for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }

 A[id] = big_calc4(id);

}
implicit barrier at the end

of a parallel region

implicit barrier at the end

of a parallel region

implicit barrier at the end of a

for worksharing construct

implicit barrier at the end of a

for worksharing construct

no implicit barrier

due to nowait

no implicit barrier

due to nowait

45

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ double pi; step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

 int i, id,nthrds; double x, sum;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 if (id == 0) nthreads = nthrds;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 for (i=id, sum=0.0;i< num_steps; i=i+nthreads){

 x = (i+0.5)*step;

 sum += 4.0/(1.0+x*x);

 }

 #pragma omp critical

 pi += sum * step;

}

}

Example: Using a critical section to remove impact of false sharing

Sum goes “out of scope” beyond the parallel

region … so you must sum it in here. Must

protect summation into pi in a critical region

so updates don’t conflict

Sum goes “out of scope” beyond the parallel

region … so you must sum it in here. Must

protect summation into pi in a critical region

so updates don’t conflict

No array, so

no false

sharing.

No array, so

no false

sharing.

No array, so

no false

sharing.

Create a scalar local to

each thread to

accumulate partial

sums.

Create a scalar local to

each thread to

accumulate partial

sums.

Results*: pi program critical section

46

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW

thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD

1st

SPMD

padded

SPMD

critical

1 1.86 1.86 1.87

2 1.03 1.01 1.00

3 1.08 0.69 0.68

4 0.97 0.53 0.53

47

Outline

• Preamble: On becoming a parallel programmer

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Synchronize single masters and stuff

• Data environment

• A parallel construct by itself creates an SPMD or “Single
Program Multiple Data” program … i.e., each thread
redundantly executes the same code.

• How do you split up pathways through the code between
threads within a team?
– This is called worksharing
– Loop construct

– Sections/section constructs

– Single construct

– Task construct

48

Discussed later

SPMD vs. worksharing

49

The loop worksharing Constructs

• The loop worksharing construct splits up loop iterations
among the threads in a team

#pragma omp parallel

{

#pragma omp for

 for (I=0;I<N;I++){

 NEAT_STUFF(I);

 }

}

#pragma omp parallel

{

#pragma omp for

 for (I=0;I<N;I++){

 NEAT_STUFF(I);

 }

}

Loop construct

name:

•C/C++: for

•Fortran: do

The variable I is made “private” to each

thread by default. You could do this

explicitly with a “private(I)” clause

50

Loop worksharing Constructs
A motivating example

for(i=0;i<N;i++) { a[i] = a[i] + b[i];} for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel

{

 int id, i, Nthrds, istart, iend;

 id = omp_get_thread_num();

 Nthrds = omp_get_num_threads();

 istart = id * N / Nthrds;

 iend = (id+1) * N / Nthrds;

 if (id == Nthrds-1)iend = N;

 for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}

}

#pragma omp parallel

{

 int id, i, Nthrds, istart, iend;

 id = omp_get_thread_num();

 Nthrds = omp_get_num_threads();

 istart = id * N / Nthrds;

 iend = (id+1) * N / Nthrds;

 if (id == Nthrds-1)iend = N;

 for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}

}

#pragma omp parallel

#pragma omp for

 for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel

#pragma omp for

 for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel

region

OpenMP parallel

region and a

worksharing for

construct

53

Combined parallel/worksharing construct

• OpenMP shortcut: Put the “parallel” and the
worksharing directive on the same line

 double res[MAX]; int i;

#pragma omp parallel

{

 #pragma omp for

 for (i=0;i< MAX; i++) {

 res[i] = huge();

 }

}

These are equivalent These are equivalent

 double res[MAX]; int i;

#pragma omp parallel for

 for (i=0;i< MAX; i++) {

 res[i] = huge();

 }

 double res[MAX]; int i;

#pragma omp parallel for

 for (i=0;i< MAX; i++) {

 res[i] = huge();

 }

56

Reduction

• We are combining values into a single accumulation variable
(ave) … there is a true dependence between loop iterations
that can’t be trivially removed

• This is a very common situation … it is called a “reduction”.

• Support for reduction operations is included in most parallel
programming environments.

 double ave=0.0, A[MAX]; int i;

 for (i=0;i< MAX; i++) {

 ave + = A[i];

 }

 ave = ave/MAX;

 How do we handle this case?

57

Reduction
• OpenMP reduction clause:

reduction (op : list)

• Inside a parallel or a work-sharing construct:

– A local copy of each list variable is made and initialized depending

on the “op” (e.g. 0 for “+”).

– Updates occur on the local copy.

– Local copies are reduced into a single value and combined with

the original global value.

• The variables in “list” must be shared in the enclosing

parallel region.

 double ave=0.0, A[MAX]; int i;

 #pragma omp parallel for reduction (+:ave)

 for (i=0;i< MAX; i++) {

 ave + = A[i];

 }

 ave = ave/MAX;

60

Example: Pi with a loop and a reduction

#include <omp.h>

static long num_steps = 100000; double step;

void main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 #pragma omp parallel

 {

 double x;

 #pragma omp for reduction(+:sum)

 for (i=0;i< num_steps; i++){

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 }

 pi = step * sum;

}

Results*: pi with a loop and a reduction

61

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW

thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st

SPMD

1st

SPMD

padded

SPMD

critical

PI Loop

1 1.86 1.86 1.87 1.91

2 1.03 1.01 1.00 1.02

3 1.08 0.69 0.68 0.80

4 0.97 0.53 0.53 0.68

64

Outline

• Preamble: On becoming a parallel programmer

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Synchronize single masters and stuff

• Data environment

66

Single worksharing Construct

• The single construct denotes a block of code that is
executed by only one thread (not necessarily the master
thread).

• A barrier is implied at the end of the single block (can
remove the barrier with a nowait clause).

#pragma omp parallel

{

 do_many_things();

#pragma omp single

 { exchange_boundaries(); }

 do_many_other_things();

}

67

Sections worksharing Construct

• The Sections worksharing construct gives a different
structured block to each thread.

#pragma omp parallel

{

 #pragma omp sections

 {

 #pragma omp section

 X_calculation();

 #pragma omp section

 y_calculation();

 #pragma omp section

 z_calculation();

 }

}

#pragma omp parallel

{

 #pragma omp sections

 {

 #pragma omp section

 X_calculation();

 #pragma omp section

 y_calculation();

 #pragma omp section

 z_calculation();

 }

}

By default, there is a barrier at the end of the “omp sections”.

Use the “nowait” clause to turn off the barrier.

70

Synchronization: Simple Locks
• Example: conflicts are rare, but to play it safe, we must assure mutual

exclusion for updates to histogram elements.

#pragma omp parallel for

 for(i=0;i<NBUCKETS; i++){

 omp_init_lock(&hist_locks[i]); hist[i] = 0;

 }

 #pragma omp parallel for

 for(i=0;i<NVALS;i++){

 ival = (int) sample(arr[i]);

 omp_set_lock(&hist_locks[ival]);

 hist[ival]++;

 omp_unset_lock(&hist_locks[ival]);

 }

for(i=0;i<NBUCKETS; i++)

 omp_destroy_lock(&hist_locks[i]);

Free-up storage when done. Free-up storage when done.

One lock per element of hist One lock per element of hist

Enforce mutual

exclusion on

update to hist array

Enforce mutual

exclusion on

update to hist array

73

Environment Variables

• Set the default number of threads to use.

–OMP_NUM_THREADS int_literal

• OpenMP added an environment variable to control the size of

child threads’ stack

–OMP_STACKSIZE

• Also added an environment variable to hint to runtime how to

treat idle threads

–OMP_WAIT_POLICY

– ACTIVE keep threads alive at barriers/locks

– PASSIVE try to release processor at barriers/locks

• Control how “omp for schedule(RUNTIME)” loop iterations are
scheduled.

–OMP_SCHEDULE “schedule[, chunk_size]”

74

Outline

• Preamble: On becoming a parallel programmer

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Synchronize single masters and stuff

• Data environment

75

Data environment:
Default storage attributes

• Shared Memory programming model:
–Most variables are shared by default

• Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE variables

– C: File scope variables, static

– Both: dynamically allocated memory (ALLOCATE, malloc, new)

• But not everything is shared...
– Stack variables in subprograms(Fortran) or functions(C) called

from parallel regions are PRIVATE

– Automatic variables within a statement block are PRIVATE.

76

 double A[10];

 int main() {

 int index[10];

 #pragma omp parallel

 work(index);

 printf(“%d\n”, index[0]);

 }

extern double A[10];

void work(int *index) {

 double temp[10];

 static int count;

 ...

}

Data sharing: Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are

shared by all threads.

temp is local to each

thread

A, index and count are

shared by all threads.

temp is local to each

thread

77

Data sharing:
Changing storage attributes

• One can selectively change storage attributes for constructs
using the following clauses*

– SHARED

– PRIVATE

– FIRSTPRIVATE

• The final value of a private inside a parallel loop can be

transmitted to the shared variable outside the loop with:

– LASTPRIVATE

• The default attributes can be overridden with:

– DEFAULT (PRIVATE | SHARED | NONE)

All the clauses on this page apply

to the OpenMP construct NOT to

the entire region.

All the clauses on this page apply

to the OpenMP construct NOT to

the entire region.

*All data clauses apply to parallel constructs and worksharing constructs except

“shared” which only applies to parallel constructs.

DEFAULT(PRIVATE) is Fortran only

78

Data Sharing: Private Clause

void wrong() {

 int tmp = 0;

#pragma omp parallel for private(tmp)

 for (int j = 0; j < 1000; ++j)

 tmp += j;

 printf(“%d\n”, tmp);

}

• private(var) creates a new local copy of var for each thread.

– The value of the private copies is uninitialized

– The value of the original variable is unchanged after the region

tmp was not

initialized

tmp was not

initialized

tmp is 0 here tmp is 0 here

Firstprivate Clause

• Variables initialized from shared variable

• C++ objects are copy-constructed

79

incr = 0;

#pragma omp parallel for firstprivate(incr)

for (i = 0; i <= MAX; i++) {

 if ((i%2)==0) incr++;

 A[i] = incr;

}

incr = 0;

#pragma omp parallel for firstprivate(incr)

for (i = 0; i <= MAX; i++) {

 if ((i%2)==0) incr++;

 A[i] = incr;

}
Each thread gets its own copy

of incr with an initial value of 0

Each thread gets its own copy

of incr with an initial value of 0

81

Example: Pi program … minimal changes

#include <omp.h>

static long num_steps = 100000; double step;

void main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

#pragma omp parallel for private(x) reduction(+:sum)

 for (i=0;i< num_steps; i++){

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

Note: we created a

parallel program without

changing any executable

code and by adding 2

simple lines of text!

Note: we created a

parallel program without

changing any executable

code and by adding 2

simple lines of text!

i private by

default

i private by

default

i private by

default

For good OpenMP

implementations,

reduction is more

scalable than critical.

For good OpenMP

implementations,

reduction is more

scalable than critical.

For good OpenMP

implementations,

reduction is more

scalable than critical.

82

Conclusion

• OpenMP is one of the simplest APIs available for
programming shared memory machines.
• This simplicity means you can focus on mastering the key design

patterns and applying them to your own problems

• We covered the following essential parallel programming
design patterns:
– Fork join

– SPMD

– Loop level parallelism

• Next steps?
– Start writing parallel code … you can only learn this stuff by writing

lots of code.

– Let’s consider some of the newer and more advanced features of
OpenMP.

