PySKI: THE PYTHON SPARSE KERNEL INTERFACE

Erin Carson
Ben Carpenter
Armando Fox
James Demmel
Efficiency vs. Productivity

- Efficiency: Low-level Auto-tuning libraries, such as OSKI, enable better performance for scientific computations
 - Complex matrix tuning optimizations
 - C code enables near peak performance
 - Hard to write

- Productivity: Higher level languages, such as Python, enable faster/better code development
 - 2-5x faster development (P. Hudak and M. P. Jones, 1994)
 - Less efficiency

- Can we combine the benefits of both?
Background: The Need for Auto-tuning

Mflops/s for Various Block Sizes in MatMul Operation

$k_0 = 1$

"Needle in a haystack": 2-by-3 tile size fastest
OSKI: Optimized Sparse Kernel Interface

- C Library used in solver libraries
- BLAS-style interface
 - SpMV, SpTS, etc.
- Automatically tuned computational kernels on sparse matrices
 - Optimal tuning choices are often non-obvious
- 3 Types of Tuning
 - Install-time tuning (based on system)
 - Implicit run-time tuning (performance monitoring)
 - Explicit run-time tuning (workload hints)
How OSKI Tunes (Overview)

1. Build for Target Arch.
2. Benchmark

1. Benchmark data
2. Generated code variants

Library Install-Time (offline) ➔ Application Run-Time

1. Evaluate Models
2. Select Data Struct. & Code

Matrix from program monitoring

History
Heuristic models

Workload

To user:
Matrix handle for kernel calls

Extensibility: Advanced users may write & dynamically add “Code variants” and “Heuristic models” to system.
Example: Tuning with Explicit Hints

```c
oski_matrix_t A_tunable = oski_CreateMatCSR( ... );

/* Tell OSKI we will call SpMV 500 times (explicit workload hint) */
oski_SetHintMatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view, 500);

/* Tell OSKI we think the matrix has 8x8 blocks (structural hint) */
oski_SetHint(A_tunable, HINT_SINGLE_BLOCKSIZE, 8, 8);

/* Ask OSKI to tune */
oski_TuneMat(A_tunable);

for( i = 0; i < 500; i++ )
    oski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);
```
PySKI Motivation

- Can we enable users to both write code productively and achieve speedups from auto-tuning?

- Currently: C/OSKI requires the user to mix tuning and computation code – Not productive
 - When to change representation of a matrix?
 - When to do expensive "unmarshal" of a representation?
 - When to tune and re-tune?
 - Setting explicit tuning hints
PySKI Goal: Hiding Efficiency Code

- Provide Python bindings for OSKI via scipy.sparse
 - A python sparse matrix package with some overlap with OSKI
 - OSKI maintains data structures plus "shadow" data structures for tuning
 - Abstract datatypes wrap pointers to these structures

- Expose higher-level abstract datatypes & methods to productivity programmer
 - low-level OSKI objects become transparent to mainline computation

- Idea: separate tuning hints from main source code
 - changes to policy don't contaminate source
 - policy experimentation can proceed in parallel
 - Enables performance portability
Example: Matrix Multiply

USER PROGRAM: PYTHON

```python
import scipy.sparse
A = csr_matrix()
b = array()
C = A*b
```

DECORATOR CODE

```python
def check_OSKI(*args):
    if OSKI is installed:
        if check_for_hint():
            set_hints()
            tune_mats()

            call OSKI SpMV
            gather profiling data

    else:
        fall through to scipy matmul code
```

SCIPY SOURCE CODE

```python
@check_OSKI
def _mul_(*args)
    perform matmul
```
Challenges: Identification of Call Site

- Need to know when and where to associate tuning hints
- Questions
 - How much (if any) information should the user specify?
 - How can we keep track of this information?

Matrix A1, A2
Vector v

GMRES(A1,v)
GMRES(A2,v)
Change nonzero entries of A1
GMRES(A1,v)

@tune_function
def GMRES(Matrix A, Vector v):
 SPMV(A,v)
 TSQR(v)

How does PySKI know which tuned SPMV and TSQR to use? What if co-tuning is required?
Challenges: Handling History

- History, or profiling data, can be useful in future tuning operations

- How much history should we keep?
 - From this execution?
 - Currently in OSKI, along with load/save transformation methods
 - Across multiple runs?

- Future: maintain tuning databases
The Big Picture

Productivity app

.py

OS/HW

PLL Interp

SEJITS

Specializer

OS/HW

Install-time autotuning

.tuned

History

perf. counters
BACKUP SLIDES
Summary of Performance Optimizations

- **Optimizations for SpMV**
 - **Register blocking (RB):** up to 4x over CSR
 - **Variable block splitting:** 2.1x over CSR, 1.8x over RB
 - **Diagonals:** 2x over CSR
 - **Reordering** to create dense structure + **splitting:** 2x over CSR
 - **Symmetry:** 2.8x over CSR, 2.6x over RB
 - **Cache blocking:** 2.8x over CSR
 - **Multiple vectors (SpMM):** 7x over CSR
 - And combinations…

- **Sparse triangular solve**
 - Hybrid sparse/dense data structure: 1.8x over CSR

- **Higher-level kernels**
 - $A \cdot A^T \cdot x$, $A^T \cdot A \cdot x$: 4x over CSR, 1.8x over RB
 - $A^2 \cdot x$: 2x over CSR, 1.5x over RB
 - $[A \cdot x, A^2 \cdot x, A^3 \cdot x, .. , A^k \cdot x]$
Preliminary results: 2x speedup over Python for ~1000x1000 matrices

- Need to test larger sizes, where matrix does not fit in cache

80 implementations of same set of requirements were attempted by 74 different programmers. task was to see if a given phone number spells anything interesting, given access to a dictionary of legal words. programmers self-reported their development time. PLL programmers (Perl, Tcl, Python, Rexx) took anywhere from 2x-5x quicker to develop than ELL programmers (C, C++, Java). roughly, the "number of LOC per hour" is stable across all languages, except that for C/C++ the ratio is superlinear (ie, a C/C++ program that is twice as many LOC takes more than twice as long to produce), yet scripting languages do more work per LOC.
The Big Picture

- Call decorated function
- Statically auto-tuned?
- Specia...