PARLab Parallel Boot Camp

PARLab Application:
Speech recognition for meetings

Nelson Morgan
International Computer Science Institute (ICSI)
and
Electrical Engineering and Computer Sciences
University of California, Berkeley
PARLab Parallel Boot Camp

PARLab Application:
Speech recognition for meetings

Representing work from a number of people, but primarily:
Adam Janin, Chris Oei, Suman Ravuri, Sherry Zhao (ICSI)

And

Jike Chong, Youngmin Yi, and Ekaterina Gonina (UCB/EECS)
The “meeting” application - goals

For “real” meetings:

• Replacing inconsistent note-taking
• Access to transcriptions
• Indexed information for search
• Query-specific summaries
The “meeting diarizer” application
The “meeting” application - challenges

- Most meeting rooms not heavily instrumented
- Resulting signals have significant noise and reverberation → poor speech recognition accuracy
- Real time performance necessary for many scenarios
- Some applications require better than real time
- Other components aside from speech recognition also required
- Not just a need for speed: also a need for better performance (accuracy)
The “meeting” application - primary questions

• Can extreme parallelism be used to improve accuracy?
• Can we make use of PARLab primitives to efficiently represent all of the components of this application?
• Can new approaches to this application be coded by mere mortals?
Components of the application

- Automatic speech recognition
- Speaker diarization
- Speaker recognition
- Question answering/summarization
- Topic clustering
- ...

8/21/09 Nelson Morgan Parallel Speech Recognition: 7
Basic uni-stream speech recognition

- Speech
 - Signal Processing Stream
 - Local Probability Estimator
 - Acoustic Parameters
 - Language Model
 - Decoder
 - Pronunciation Lexicon
 - Words
System level parallelism is determined by “decoding” strategy. Current state-of-the-art decoders are time synchronous, but this is not the only option.

With time synchronous decoding, the system-level pattern is pipe-and-filter with task parallelism.

Most systems integrate the local probability estimator and the decoder.

Currently signal processing part is small; but should it be?
Speech recognition: one stream to multi to many

• Speech recognition works well under good conditions given plentiful resources (e.g., training) [<10% word error rate (WER)]

• Poor performance for common conditions [>30% WER] (noise, reverb, + casual/conversational speech)

• Multiple and diverse signal processing methods help, e.g., several “streams” of features

• An open question: can a large (>100) number of streams provide much greater robustness?

• Preliminary results suggest yes (15% WER -> 8%)
Multi/many stream speech recognition
Multi/many stream feature extraction

Auditory Spectrum

Gabor #1 → MLP #1 → Selection/Combination (Sparse coding) → Log+PCA
Gabor #2 → MLP #2
Gabor #3 → MLP #3
Gabor #N → MLP #N
Multi/many stream parallel pattern

• Multi/many stream computation
 • Map Reduce pattern
 • Task parallelism

• Gabor filters
 • Dense linear algebra, SIMD

• MLPs
 • Dense linear algebra, SIMD

• If the filters are similar enough, one could instead use SIMD across all the filters.
Multilayer Perceptron (a.k.a Neural Network)

Input Layer
39 Features

Hidden Layer
Up to 16000 Fully Connected Units

Output Layer
56 Phones

8/21/09
Nelson Morgan
The “decoder” outputs the most likely word sequence given the data.

- Implemented as a Weighted Finite State Transducer
- Complex graph traversal algorithm
- Innermost loop is state (node) update
 - Parallel over states OR arcs
 - SIMD
Parallelizing the parts

- Explicitly parallel parts: multiple feature streams, including MLPs -> task parallel
- Embarassingly parallel parts: MLPs, Gabor filter, and Gaussian computations -> dense linear algebra, SIMD.
- Tricky stuff: speech “decoding” -> graph traversal (currently done with weighted finite state transducers)
• Application person’s point of view: improving the application performance
• Parallelization is a means to that end
• For some applications, faster than real-time is useful
• To run meeting app on future handheld devices, parallelism will be required
• Each of the meeting diarizer components needs to be parallelized
• For the speech recognition part, we have done this in a painstaking way
• Given the identification of parallel motifs, we hope to be able to build the full application with ParLab tools